9 resultados para muscle protein

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cDNA encoding hsc70 of Chinese shrimp Fenneropenaeus chinensis was cloned from hepatopancreas by RT-PCR based on its EST sequence. The full length cDNA of 2090 bp contained an open reading frame of 1956 nucleotides and partial 5'- and 3'-untranslated region(5'- and 3'-UTR). PCR amplification and sequencing analysis showed the existence of introns in the region of 1-547 bp, but they did not exist in the region of 548-2090 bp of hsc70 cDNA. When the deduced 652 amino acid sequence of HSC70 was compared with the members of HSP70 family from other organisms, the results showed 85.9% similarity with HSC71 from Oncorhynchus mykiss and HSC70 from Homo sapiens. It also exhibited 85.8% similarity with HSP70 from Mus musculu and 85.4% with HSC70 from Manduca sexta. Expression analysis showed that hsc70 mRNA was espressed constitutively in hepatopancreas, muscle, eyestalks, haemocytes, heart, ovary, intestine and gills in Fenneropenaeus chinensis. No difference could be detected on hsc70 mRNA level in muscle between heat-shocked and control animals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The notochord is one of the diagnostic features of the phylum Chordata. Despite the similarities in the early morphogenetic patterns of the notochords of various chordates, they are strikingly distinct from one another at the histological level. The amphioxus notochord is one example of an evolutionary novelty because it is made up of muscle cells. Our previous expressed sequence tag analysis, targeting messenger RNAs expressed in the adult amphioxus notochord, demonstrated that many muscle-related genes are expressed there. To characterize amphioxus notochord cells and to gain insights into the myogenic program in the notochord, we determined the spatial and temporal expression patterns of these muscle-related genes during amphioxus development. We found that BbNA1 (notochord actin), Amphi-Trop I (troponin I), Amphi-TPmyosin (tropomyosin), Amphi-MHC2 (myosin heavy chain), Amphi-nMRLC (notochord-specific myosin regulatory light chain), AmphinTitin/MLCK (notochord-specific titin/myosin light chain kinase), Amphi-MLP/CRP3 (muscle LIM protein), and Amphi-nCalponin (notochord-specific calponin) are expressed with characteristic patterns in notochord cells, including the central cells, dorsally located cells, and ventrally located cells, suggesting that each notochord cell has a unique molecular architecture that may reflect its function. In addition, we characterized two MyoD genes (Amphi-MyoD1 and Amphi-MyoD2) to gain insight into the genetic circuitry governing the formation of the notochord muscle. One of the MyoD genes (Amphi-MyoD2) is expressed in the central notochord cells, and the coexistence of Amphi-MyoD2 transcripts along with the Amphi-MLP/CRP3 transcripts implies the participation of Amphi-MyoD2 in the myogenic program in the notochord muscle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The C1q-domain-containing (C1qDC) proteins are a family of proteins characterized by a globular C1q (gC1q) domain in their C-terminus. They are involved in various processes of vertebrates and supposed to be an important pattern recognition receptor in innate immunity of invertebrates. In this study, a novel member of C1q-domain-containing protein family was identified from Zhikong scallop Chlamys farreri (designated as CfC1qDC) by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of CfC1qDC was of 777 bp, consisting of a T-terminal untranslated region (UTR) of 62 bp and a 3' UTR of 178 bp with a polyadenylation signal sequence AATAAA and a poly (A) tail. The CfC1qDC cDNA encoded a polypeptide of 178 amino acids, including a signal peptide and a C1q-domain of 158 amino acids with the theoretical isoelectric point of 5.19 and the predicted molecular weight of 17.2 kDa. The C1q-domain in CfC1qDC exhibited homology with those in sialic acid binding lectin from mollusks and C1qDC proteins from higher vertebrates. The typical 10 beta-strand jelly-roll folding topology structure of C1q-domain and the residues essential for effective packing of the hydrophobic core were well conserved in CfC1qDC. By fluorescent quantitative real-time PCR, mRNA transcripts of CfC1qDC were mainly detected in kidney, mantle, adductor muscle and gill, and also marginally detectable in hemocytes. In the bacterial challenge experiment, after the scallops were challenged by Listonella anguillarum, there was a significant up-regulation in the relative expression level of CfC1qDC and at 6 h post-injection, the mRNA expression reached the maximum level and was 4.55-fold higher than that of control scallops. Similarly, the expression of CfC1qDC mRNA in mixed primary cultures of hemocytes stimulated by lipopolysaccharides (LPS) was up-regulated and reached the maximum level at 6 h post-stimulation, and then dropped back to the original level gradually. In order to investigate its function, the cDNA fragment encoding the mature peptide of CfC1qDC was recombined and expressed in Escherichia coli BL21 (DE3). The recombinant CfC1qDC protein displayed a significantly strong activity to bind LIDS from E. coli, although no obvious antibacterial or agglutinating activity toward Gram-negative bacteria E. coli JM109, L. anguillarum and Gram-positive bacteria Micrococcus luteus was observed. These results suggested that CfC1qDC was absolutely a novel member of the C1qDC protein family and was involved in the recognition of invading microorganisms probably as a pattern recognition molecule in mollusk. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lysozyme is a widely distributed hydrolase possessing lytic activity against bacterial peptidoglycan, which enables it to protect the host against pathogenic infection. In the present study, the cDNA of an invertebrate goose-type lysozyme (designated CFLysG) was cloned from Zhikong scallop Chlamys farreri by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) techniques. The full-length cDNA of CFLysG consisted of 829 nucleotides with a canonical polyadenylation signal sequence AATAAA and a poly(A) tail, and an open reading frame (ORF) of 603 bp encoding a polypeptide of 200 amino acid residues with a predicted molecular weight of 21.92 kDa and theoretical isoelectric point of 7.76. The high similarity of CFLysG with goose-type (g-type) lysozymes in vertebrate indicated that CFLysG should be an invertebrate counterpart of g-type lysozyme family, which suggested that the origin of g-type lysozyme preceded the emergence of urochordates and even preceded the emergence of deuterostomes. Similar to most g-type lysozymes, CFLysG possessed all conserved features critical for the fundamental structure and function of g-type lysozymes, such as three catalytic residues (Glu 82, Asp 97, Asp 108). By Northern blot analysis, mRNA transcript of CFLysG was found to be most abundantly expressed in the tissues of gills, hepatopancreas and gonad, weakly expressed in the tissues of haemocytes and mantle, while undetectable in the adductor muscle. These results suggested that CFLysG could possess combined features of both the immune and digestive adaptive lysozymes. To gain insight into the in vitro lytic activities of CFLysG, the mature peptide coding region was cloned into Pichia pastoris for heterogeneous expression. Recombinant CFLysG showed inhibitive effect on the growth of both Gram-positive and Gram-negative bacteria with more potent activities against Gram-positive bacteria, which indicated the involvement of CFLysG in the innate immunity of C. farreri. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

C2 domains are protein structural modules found in many eukaryotic proteins involved in signal transduction, membrane trafficking, and immune defense. Most of the studied C2 domain-containing proteins are multi-domained in structure, in which the C2 domain is an independently folded motif and plays an essential role in calcium-dependent membrane-targeting. Although C2 domains isolated from intact proteins have been studied for biological functions, no study on natural proteins containing C2 domain only has been documented. In this study, we identified a Scophthalmus maximus protein SmC2P1 that is comprised of a single C2 domain and lacks any other apparent domain structures. The deduced amino acid sequence of SmC2P1 contains 129 residues and shares 36-38% identities with the C2 domains of the perforins of several fish species. Like typical C2 domains, SmC2P1 is predicted to organize into eight beta-strands with a Ca2+-binding site located in inter-strand loops. SmC2P1 expression was detected, in deceasing order, in liver, spleen, blood, brain, muscle, kidney, gill, and heart. Experimental challenge of turbot with a bacterial pathogen significantly upregulated SmC2P1 expression in kidney in a time-dependent manner. Recombinant SmC2P1 purified from yeast exhibits no hemolytic activity but binds to pathogen-infected kidney lymphocytes in the presence of calcium. Furthermore, interaction of recombinant SmC2P1 with bacterium-infected lymphocytes reduced bacterial survival. These results indicate that SmC2P1 is a functional protein that is involved in host immune defense against bacterial infection. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Specification and differentiation of skeletal muscle cells are driven by the activity of genes encoding members of the myogenic regulatory factors (MRFs). In vertebrates, the MRF family includes MyoD, Myf5, myogenin, and MRF4. The MRFs are capable of converting a variety of nonmuscle cells into myoblasts and myotubes. To better understand their roles in fish muscle development, we isolated the MyoD gene from flounder (Paralichthys olivaceus) and analyzed its structure and patterns of expression. Sequence analysis showed that flounder MyoD shared a structure similar to that of vertebrate MRFs with three exons and two introns, and its protein contained a highly conserved basic helix-loop-helix domain (bHLH). Comparison of sequences revealed that flounder MyoD was highly conserved with other fish MyoD genes. Sequence alignment and phylogenetic analysis indicated that flounder MyoD, seabream (Sparus aurata) MyoD1, takifugu (Takifugu rubripes) MyoD, and tilapia (Oreochromis aureus) MyoD were more likely to be homologous genes. Flounder MyoD expression was first detected as two rows of presomitic cells in the segmental plate. From somitogenesis, MyoD transcripts were present in the adaxial cells that give rise to slow muscles and the lateral somitic cells that give rise to fast muscles. After 30 somites formed, MyoD expression decreased in the somites except the caudal somites, coincident with somite maturation. In the hatching stage, MyoD was expressed in other muscle cells and caudal somites. It was detected only in muscle in the growing fish.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MRF4 is one of muscle regulatory factors and plays critical roles during skeletal muscle development. The muscle development is important for the fish growth which is an important economic factor for the fish culture. To analyze the function of MRF4 in fish, the founder MRF4 antibody was prepared. The flounder MRF4 was cloned, ligated into prokaryotic expression vector pET-30b and expressed in strain E. coli BL21 (130). The recombinant flounder MRF4 fusion protein was soluble and purified with cobalt IMAC resins. To prepare MRF4 polyclonal antibodies, rabbits were immunized with the soluble protein and the increasing level of antibodies was determined by Western blot. Also, the endogenous flounder MRF4 was recognized by the anti-serum. The result further proved the existence of the anti-MRF4 antibody in the anti-serum, which will be useful for studies on the function of flounder MRF4.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A full length amphioxus cDNA, encoding a novel phosducin-like protein (Amphi-PhLP), was identified for the first time from the gut cDNA library of Branchiostoma belcheri. It is comprised of 1 550 bp and an open reading frame (ORF) of 241 amino acids, with a predicted molecular mass of approximately 28 kDa. In situ hybridization histochemistry revealed a tissue-specific expression pattern of Amphi-PhLP with the high levels in the ovary, and at a lower level in the hind gut and testis, hepatic caecum, gill, endostyle, and epipharyngeal groove, while it was absent in the muscle, neural tube and notochord. In the Chinese Hamster Ovary (CHO) cells transfected with the expression plasmid pEGFP-N1/Amphi-PhLP, the fusion protein was targeted in the cytoplasm of CHO cells, suggesting that Amphi-PhLP is a cytosolic protein. This work may provide a framework for further understanding of the physiological function of Amphi-PhLP in B. belcheri.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HSP22 is a member of a small HSP subfamily contributing to the growth, transformation and apoptosis of the cell as well as acting as a molecular chaperone. In the present study, CfHSP22 cDNA was cloned from Chlamys farreri by the rapid amplification of cDNA ends technique. The full-length cDNA of CfHSP22 was of 1279 bp, consisting of a 5'-terminal untranslated region (5'UTR) of 122 bp, a 3'UTR of 581 bp with a canonical polyadenylation signal sequence AATAAA and a poly( A) tail, and an open reading frame of 576 bp encoding a polypeptide with a molecular mass of 22.21 kDa and a predicted isoelectric point of 9.69. There was an alpha-crystallin domain, a hallmark of the sHSP subfamily, in the C-terminus, and the deduced amino acid sequence of CfHSP22 showed high similarity to previously identified HSP22s. CfHSP22 was constitutively expressed in the haemocyte, muscle, kidney, gonad, gill, heart and hepatopancreas, and the expression level in the hepatopancreas was higher than that in the other tissues. CfHSP22 transcription was up-regulated and reached a maximal level at 12 h after the bacterial challenge, and then declined progressively to the original level at 48 h. These results suggested that CfHSP22 perhaps play a critical role in response to the bacterial challenge in haemocytes of scallop C. farreri.