4 resultados para motilin

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

motilin,ghrelin是一对结构相似,功能相关的多肽类荷尔蒙.尽管彼此有所区别,二者都在胃肠消化道行使功能,参与调控能量动态平衡和生长激素的释放.研究发现,编码这两种荷尔蒙前体的基因在哺乳动物进化的早期经历了插曲式的快速进化,期间积累了许多改变氨基酸性质(电荷、极性、及空间容量)的非同义替换.值得注意的是,有功能活性的obestatin多肽荷尔蒙很可能是这一插曲式快速进化后才演化出现的.在哺乳动物进化的早期,发生了一系列复杂的变化,与此同时,我们观察到在相关过程中承担重要功能的motilin,ghrelin基因编码区经历了插曲式的快速进化,提示这可能对世系特异的适应性变化有所贡献.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motilin and ghrelin, members of a structure-function-related hormone family, play important roles in gastrointestinal function, regulation of energy homeostasis and growth hormone secretion. We observed episodic evolution in both of their prehormone gene sequences during primitive placental mammal evolution, during which most of the nonsynonymous changes result in radical substitution. Of note, a functional obestatin hormone might have only originated after this episodic evolution event. Early in placental mammal evolution, a series of biology complexities evolved. At the same time the motilin and ghrelin prehormone genes, which play important roles in several of these processes, experienced episodic evolution with dramatic changes in their coding sequences. These observations suggest that some of the lineage-specific physiological adaptations are due to episodic evolution of the motilin and ghrelin genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Specific interactions among biomolecules drive virtually all cellular functions and underlie phenotypic complexity and diversity. Biomolecules are not isolated particles, but are elements of integrated interaction networks, and play their roles through specific interactions. Simultaneous emergence or loss of multiple interacting partners is unlikely. If one of the interacting partners is lost, then what are the evolutionary consequences for the retained partner? Taking advantages of the availability of the large number of mammalian genome sequences and knowledge of phylogenetic relationships of the species, we examined the evolutionary fate of the motilin (MLN) hormone gene, after the pseudogenization of its specific receptor, MLN receptor (MLNR), on the rodent lineage. We speculate that the MLNR gene became a pseudogene before the divergence of the squirrel and other rodents about 75 mya. The evolutionary consequences for the MLN gene were diverse. While an intact open reading frame for the MLN gene, which appears functional, was preserved in the kangaroo rat, the MLN gene became inactivated independently on the lineages leading to the guinea pig and the common ancestor of the mouse and rat. Gain and loss of specific interactions among biomolecules through the birth and death of genes for biomolecules point to a general evolutionary dynamic: gene birth and death are widespread phenomena in genome evolution, at the genetic level; thus, once mutations arise, a stepwise process of elaboration and optimization ensues, which gradually integrates and orders mutations into a coherent pattern.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

哺乳动物motilin/ghrelin荷尔蒙基因家族编码产生三种多肽荷尔蒙,motilin、ghrelin和obestatin。这三种荷尔蒙分别结合各自特异性受体MLNR、GHSR和GPR39,调控不尽相同,但类似或相关的生理生化过程,并且它们的受体相互之间也高度同源。根据达尔文的进化论,任何复杂的生物系统都是在原有基础上,在自然选择的作用下逐步调整优化而来(Darwin 1859)。一方面,一个系统中相互作用的各个组分在进化过程中同时发生或变化的概率微乎其微;另一方面,紧密相互关联的系统中一个组分的孤立存在看起来又是毫无意义的。本研究中,我们基于系统发育分析重建了荷尔蒙基因家族及其受体基因家族的进化历史,探讨它们在进化中的关系。从而了解在一个整合的系统中,基因复制(gene duplication)后产生的新的组分是如何演化的,是如何形成新的分子间相互作用(如荷尔蒙–受体间特异性相互作用)和发生功能分化的。 我们的研究结果表明,preproghrelin(GHRL)和prepromotilin(MLN)源于一个祖先基因,是由基因重复而来,基因重复发生在C端两个新的翻译后剪辑位点演化出现之后,既两栖动物与羊膜动物分歧之后(而后产生了新的多肽荷尔蒙,例如高等哺乳动物GHRL中的obestatin)。受体与配体的进化历史并不一致。受体GPR39最先分歧,然后类似GHSR的祖先基因经历先后两次重复,产生了硬骨鱼世袭特异的基因簇A,MLNR和GHSR,基因重复事件的发生早于硬骨鱼与四足动物的分歧。Ghrelin/GHSR信号通路系统从硬骨鱼到哺乳动物的进化过程中十分保守,结构和功能几乎都没有发生太大变化。Motilin和MLNR间的特异性相互作用是荷尔蒙基因重复发生后,配体、受体间协同进化的结果,自此形成了新的Motilin/MLNR信号通路系统。 我们提出了一个复杂系统(分子间相互作用网络)进化的模型:基因重复或酶饰作用后产生了新的组分,它们通常是先前已有组分的一种结构上的变异,能与之前已经存在的分子形成新的分子间相互作用,从而演化出新的功能。基因重复之前,通常存在基因共享,即一种分子参与到多个过程、多种分子间相互作用。基因重复或酶饰作用生成了新组分,新的分子间相互作用,为功能上的专化和特化提供了条件。 此外我们还对新近发现的活的云南闭壳龟进行了分子鉴定,并探讨了云南闭壳龟的系统发育地位。云南闭壳龟(Cuora yunnanensis,Boulenger,1906)曾被认为已经灭绝,在保护生物学上受到广泛的关注。我们测定了三只活的云南闭壳龟线粒体COI和ND4及His、Ser、Leu tRNA序列片断,共1725碱基序列。结合闭壳龟属其它物种序列,包括之前测定的一只云南闭壳龟标本(MNHN 1907.10)的DNA序列,进行了分子系统学分析。与100年前的标本比较,无论是形态上、还是本文的分子系统结果都显示,新发现的活的云南闭壳龟确实是云南闭壳龟。同时,我们的结果确证了标本序列的可信性,揭示云南闭壳龟不是近期杂交形成的,代表了进化上独立的遗传谱系,且种内仍存在一定的遗传多样度。本文是分子系统学在濒危物种保护应用中的成功案例。我们的结果为推翻云南闭壳龟已经灭绝的观点提供了进一步强有力的分子生物学证据,但该物种极其稀少的状况提示其前景不容乐观,必须尽快采取有力的措施予以重点保护。