10 resultados para mitogen activated protein kinase 1
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
We uncovered the underlying energy landscape of the mitogen-activated protein kinases signal transduction cellular network by exploring the statistical natures of the Brownian dynamical trajectories. We introduce a dimensionless quantity: The robustness ratio of energy gap versus local roughness to measure the global topography of the underlying landscape. A high robustness ratio implies funneled landscape. The landscape is quite robust against environmental fluctuations and variants of the intrinsic chemical reaction rates.
Resumo:
Artemia has evolved a unique developmental pattern of encysted embryos to cope with various environmental threats. Cell divisions totally cease during the preemergence developmental stage from gastrula to prenauplius. The molecular mechanism of this, however, remains unknown. Our study focuses on the involvement of p90 ribosomal S6 kinase (RSK), a family of serine/threonine kinase-mediating signal transduction downstream of mitogen-activated protein kinase cascades, in the termination of cell cycle arrest during the post-embryonic development of Artemia-encysted gastrula. With immunochemistry, morphology, and cell cycle analysis, the identified Artemia RSK was established to be specifically activated during the post-embryonic and early larval developmental stages when arrested cells of encysted embryos resumed mitoses. In vivo knockdown of RSK activity by RNA interference, kinase inhibition, and antibody neutralization consistently induced defective larvae with distinct gaps between the exoskeleton and internal tissues. In these abnormal individuals, mitoses were detected to be largely inhibited in the affected regions. These results display the requirement of RSK activity during Artemia development and suggest its role in termination of cell cycle (G(2)/M phase) arrest and promotion of mitogenesis. Our findings may, thus, provide insights into the regulation of cell division during Artemia post-embryonic development and reveal further aspects of RSK functions.
Resumo:
We uncover the underlying potential energy landscape for a cellular network. We find that the potential energy landscape of the mitogen-activated protein-kinase signal transduction network is funneled toward the global minimum. The funneled landscape is quite robust against random perturbations. This naturally explains robustness from a physical point of view. The ratio of slope versus roughness of the landscape becomes a quantitative measure of robustness of the network. Funneled landscape is a realization of the Darwinian principle of natural selection at the cellular network level. It provides an optimal criterion for network connections and design. Our approach is general and can be applied to other cellular networks.
Resumo:
The double-stranded RNA (dsRNA)-dependent protein kinase (PKR) belongs to the eIF2 alpha kinase family and plays a critical role in interferon (IFN)-mediated antiviral response. Recently, in Japanese flounder (Paralichthys olivaceus), a PKR gene has been identified. In this study, we showed that PoPKR localized to the cytoplasm, and the dsRNA-binding motifs (dsRBMs) played a determinative role in protein localization. In cultured FEC cells, PoPKR was detected at a low level of constitutive expression but was highly induced after treatment with UV-inactivated grass carp hemorrhagic virus, active SMRV and Poly I:C although with different expression kinetics. In flounder, PoPKR was ubiquitously distributed in all tested tissues, and SMRV infection resulted in significant upregulation at mRNA and protein levels. In order to reveal the role of PoPKR in host antiviral response, its expression upon exposure to various inducers was characterized and further compared with that of PoHRI, which is another eIF2 alpha kinase of flounder. Interestingly, expression comparison revealed that all inducers stimulated upregulation of PoHRI in cultured flounder embryonic cells and fish, with a similar kinetics to PoPKR but to a less extent. These results suggest that, during antiviral immune response, both flounder eIF2 alpha kinases might play similar roles and that PoPKR is the predominant kinase. (C) 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.
Resumo:
The double-stranded RNA (dsRNA)-dependent protein kinase PKR is thought to mediate a conserved antiviral pathway by inhibiting viral protein synthesis via the phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2 alpha). However, little is known about the data related to the lower vertebrates, including fish. Recently, the identification of PKR-like, or PKZ, has addressed the question of whether there is an orthologous PKR in fish. Here, we identify the first fish PKR gene from the Japanese flounder Paralichthys olivaceus (PoPKR). PoPKR encodes a protein that shows a conserved structure that is characteristic of mammalian PKRs, having both the N-terminal region for dsRNA binding and the C-terminal region for the inhibition of protein translation. The catalytic activity of PoPKR is further evidence that it is required for protein translation inhibition in vitro. PoPKR is constitutively transcribed at low levels and is highly induced after virus infection. Strikingly, PoPKR overexpression increases eIF2 alpha phosphorylation and inhibits the replication of Scophthalmus maximus rhabdovirus (SMRV) in flounder embryonic cells, whereas phosphorylation and antiviral effects are impaired in transfected cells expressing the catalytically inactive PKR-K421R variant, indicating that PoPKR inhibits virus replication by phosphorylating substrate eIF2 alpha. The interaction between PoPKR and eIF2 alpha is demonstrated by coimmunoprecipitation assays, and the transfection of PoPKR-specific short interfering RNA further reveals that the enhanced eIF2 alpha phosphorylation is catalyzed by PoPKR during SMRV infection. The current data provide significant evidence for the existence of a PKR-mediated antiviral pathway in fish and reveal considerable conservation in the functional domains and the antiviral effect of PKR proteins between fish and mammals.
Resumo:
Double-stranded RNA-activated protein kinase (PKR) plays an important rote in interferon-induced antiviral responses, and is also involved in intracellular signaling pathways, including the apoptosis, proliferation, and transcription pathways. In the present study, a PKR-like gene was cloned and characterized from rare minnow Gobiocypris rarus. The full length of the rare minnow PKR-like (GrPKZ) cDNA is 1946 bp in Length and encodes a polypeptide of 503 amino acids with an estimated molecular mass of 57,355 Da and a predicted isoelectric point of 5.83. Analysis of the deduced amino acid sequence indicated that the mature peptide contains two Zalpha domains and one S_TKc domain, and is most similar to the crucian carp (Carassius auratus) PKR-like amino acid sequence with an identity of 77%. Quantitative RT-PCR analysis showed that GrPKZ mRNA expression is at low levels in gill, heart, intestine, kidney, liver, muscle and spleen tissues in healthy animals and up-regulated by viruses and bacteria. After being infected by grass carp reovirus, GrPKZ expression was up-regulated from 24 h post-injection and lasted until the fish became moribund (P < 0.05). Following infection with Aeromonas hydrophila, GrPKZ transcripts were induced at 24 h post-injection (P < 0.05) and returned to control levels at 120 h post-injection. These data imply that GrPKZ is involved in antiviral defense and Toll-like receptor 4 signaling pathway in bacterial infection. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Microcystin-LR (MC-LR) is the most frequently studied cyclic heptatoxin produced by cyanobacteria, which has tremendous negative impacts on fish, while its molecular mechanism behind remained unclear at present. Here, Affymetrix Zebrafish GeneChip was used to identify alterations in gene expression of zebrafish (Danio rerio) after MC-LR exposure. Among the 14,900 transcripts in the microarray, 273 genes were differentially expressed, in which 243 genes were elevated and 30 were decreased. According to GOstat analysis, MC-LR mainly influenced the cell cycle and mitogen-activated protein kinases (MAPK) signaling pathways. In addition, many immune-related genes were also influenced. These data suggest that MC-LR could promote tumorigenesis and cause immunotoxicity in fish. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The SR-protein kinase activity was analyzed and the cytological changes were observed during oocyte maturation in bisexual transparent color crucian carp ( Carassius auratus color variety). The results revealed that the SR-protein kinase activity was sensitive to the artificially induced spawning hormones, and the change of oscillatory activity was similar to that of the maturation-promoting factor (MPF) kinase that regulates meiotic cell cycle in fish.
Resumo:
Members of the SR family of pre-mRNA splicing factors are phosphoproteins that share a phosphoepitope specifically recognized by monoclonal antibody (mAb) 104. Recent studies have indicated that phosphorylation may regulate the activity and the intracellular localization of these splicing factors. Here, we report the purification and kinetic properties of SR protein kinase 1 (SRPK1), a kinase specific for SR family members. We demonstrate that the kinase specifically recognizes the SR domain, which contains serine/arginine repeats. Previous studies have shown that dephosphorylated SR proteins did not react with mAb 104 and migrated faster in SDS gels than SR proteins from mammalian cells. We show that SRPK1 restores both mobility and mAB 104 reactivity to a SR protein SF2/ASF (splicing factor 2/alternative splicing factor) produced in bacteria, suggesting that SRPK1 is responsible for the generation of the mAb 104-specific phosphoepitope in vivo. Finally, we have correlated the effects of mutagenesis in the SR domain of SF2/ASF on splicing with those on phosphorylation of the protein by SRPK1, suggesting that phosphorylation of SR proteins is required for splicing.
Resumo:
In this paper, we study the ability of DNA-PK-deficient (M059J) and -proficient (M059K) cells to undergo the rate of cellular proliferation, cell cycle distribution and apoptosis after 10 Gy X-ray irradiation, and the role of DNA-PK in radiosensitivity. The results showed that M059J cells exhibited hyper-radiosensitivity compared with M059K cells. A strong G2 phase arrest was observed in M059J cells post irradiation. Significant accumulation in the G2 phase in M059J cells was accompanied by apoptosis at 12 h. Altogether, the data suggested that DNA-PK may have two roles in mammalian cells after DNA damage, a role in DNA DSB repair and a second role in DNA-damaged cells to traverse a G2 checkpoint, by which DNA-PK may affect cellular sensitivity to ionizing radiation. 地址: [Li Ning; Zhang Hong; Wang Yanling; Hao Jifang] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China; [Li Ning; Zhang Hong; Wang Yanling; Hao Jifang] Key Lab Heavy Ion Radiat Med Gansu Prov, Lanzhou 730000, Peoples R China; [Li Ning; Wang Yanling] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China; [Wang Xiaohu] Gansu Tumor Hosp, Dept Radiotherapy, Lanzhou 730050, Peoples R China