23 resultados para mitigation
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
w Traditionally, nitrogen control is generally considered an important component of reducing lake eutrophication and cyanobacteria blooms. However, this viewpoint is refuted recently by researchers in China and North America. In the present paper, the traditional viewpoint of nitrogen control is pointed out to lack a scientific basis: the N/P hypothesis is just a subjective assumption; bottle bioassay experiments fail to simulate the natural process of nitrogen fixation. Our multi-year comparative research in more than 40 Yangtze lakes indicates that phosphorus is the key factor determining phytoplankton growth regardless of nitrogen concentrations and that total phytoplankton biomass is determined by total phosphorus and not by total nitrogen concentrations. These results imply that, in the field, nitrogen control will not decrease phytoplankton biomass. This finding is supported by a long-term whole-lake experiment from North America. These outcomes can be generalized in terms that a reduction in nitrogen loading may not decrease the biomass of total phytoplankton as it can stimulate blooms of nitrogen-fixing cyanobacteria. To mitigate eutrophication, it is not nitrogen but phosphorus that should be reduced, unless nitrogen concentrations are too high to induce direct toxic impacts on human beings or other organisms. Finally, details are provided on how to reduce controls on nitrogen and how to mitigate eutrophication. (C) 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.
Resumo:
in order to investigate a new method of mitigating the deleterious effect of harmful algal blooms (HABs), the inhibition of the glycolipid biosurfactant sophorolipid on three common harmful algae Alexandrium tamarense, Heterosigma akashiwo and Cochlodinium polykrikoides was studied. The optimum preparation condition for sophorolipid, the inhibition capability of sophorolipid and the interaction mechanism of sophorolipid on the three algal species were investigated. Results showed that sophorolipid prepared by extraction with ethyl acetate exhibited the most prominent inhibition effect and that storage time of one year had little influence on the inhibition effect of sophorolipid. The optimum concentration of 10-20 mg/l sophorolipid inhibited the motility of about 90% of the tested harmful algal cells without recovery. Investigation of the algicidal process revealed that sophorolipid induced ecdysis of A. tamarense, quick lysis of H. akashiwo and swelling of C. polykrikoides in a relatively short time. Investigation of the nucleotides showed that more than 15% of the nucleotides were released from the cytoplasm under the effect of 10-20 mg/l sophorolipid, indicating the irreversible damage on the cellular membrane, which resulted in the disintegration of the harmful algal cells. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Screening experiments were conducted in order to find promising synthetic surfactants for harmful algal blooms (HABs) mitigation. The chemically synthesized surfactant cocamidopropyl betaine (CAPB) showed characteristics of relatively high inhibition efficiency, high biodegradability and low cost. The motility inhibition ratios of 10 mg/L CAPB on Cochlodinium polykrikoides and Alexandrium tamarense were about 60% after 5 min. The biodegradation test indicated that the half-life of CAPB in seawater was shorter than one day and 90% was biodegraded after five days under the initial concentration of 100 mg/L at 25degreesC. Further cell lysis experiments revealed the selective lysis effect of CAPB on different HAB organisms. More than 90% of C. polykrikoides lysed at the concentration of 10 mg/L CAPB after 24 h and at 15 mg/L CAPB after 4 h, whereas the lysis effect of CAPB on A. tamarense was slight, no more than 10% after 2 h interaction with 50 mg/L CAPB. This research provided preliminary data for CAPB as a candidate in harmful algal blooms mitigation and pointed out unresolved problems for its practical application in the meantime. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The inhibition effect of sophorolipid and removal efficiency of loess on Cochlodinium polykrikoides and Alexandrium tamarense was investigated separately in the laboratory. Based on this, the combination of sophorolipid and loess for harmful algal bloom mitigation was proposed. Algal sedimentation tests in the laboratory and in the field revealed that the combination of sophorolipid and loess showed synergistic effects both on the removal efficiencies and on the mitigation cost. The concentration of 1 g/l loess and 5 mg/l sophorolipid was determined as the optimum ratio for C polykrikoides mitigation. In the field test, the effective concentration of loess and sophorolipid in the combination group was reduced to 10% and 25%, respectively, compared to the non-combination group, and the cost decreased more than 60%. The combination of loess and sophorolipid was considered as a promising novel method in harmful algal bloom mitigation. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
By introducing a water depth connecting formula, the hydraulic equations in the dividing channel system were coupled and the relation of discharge distribution between the branches of the dividing channels can be yielded. In this manner, a numerical model for the confluent channels was established to study the variation of backwater effects with the parameters in the channel junction. The meeting of flood peaks in the mainstream and tributary can be analyzed with this model. The flood peak meeting is found to be a major factor for the extremely high water level in the mainstream during the 1998 Yangtze River flood. Subsequently the variations of discharge distribution and water level with channel parameters between each branch in this system were studied as well. As a result, flood evolution caused by Jingjiang River shortcut and sediment deposition in the entrance of dividing channels of the Yangtze River may be qualitatively elucidated. It is suggested to be an effective measure for flood mitigation to enhance regulation capability of reservoirs available upstream of the tributaries and harness branch entrance channels.
Resumo:
本论文从生态环境可持续发展观出发,选用了两种天然高分子聚合物壳聚糖与黄原胶作为改性剂,考察了它们在海水体系中的絮凝性能以及改性当地岸沙絮凝除藻的性能,同时探讨了赤泥复合剂絮凝除藻的性能。研究结果表明: 海水体系中的离子强度阻碍了壳聚糖高分子链的舒展,有效除藻时投加量大于50 mg/L;聚合氯化铝的加入,降低了壳聚糖的投加量,并且10 mg/L壳聚糖与10 mg/L聚合氯化铝协同对100 mg/L当地岸沙进行改性,改性后沙子具有较强的除藻效果,3 min后,强壮前沟藻与海洋小球藻的去除率为80%,沉淀4 h后,两种藻的去除率高达92-96%。 黄原胶单独使用时强壮前沟藻的去除率为32%-55%;氢氧化钙的加入,提高了黄原胶的絮凝活性;当黄原胶:氢氧化钙:土壤/沙子=1:5:15时,黄原胶投加量为20 mg/L时,30 min后,强壮前沟藻的去除率为83%-89%。 赤
Resumo:
依据可信计算机系统评测标准(TCSEC)要求,提出一种使用信道容量指标的安全实时数据库中数据竞争信道的限制方法(CUCCMM),给出了限制过程中信道容量度量算法和限制参数计算方法。为了保证系统的信道容量限制标准的准确执行,提出了一种基于多概率的并发控制协议选择策略(MPBPSP)。实验结果证明CUCCMM方法可以有效地、准确地实施对隐蔽信道容量的限制,并且通过使用MPBPSP策略显著降低了信道限制操作对系统实时性能的影响。
Resumo:
伴随着全球经济一体化浪潮的来临,世界各地的经济飞速发展,同时城市化和工业化进程也在逐年加快。城市不断“摊大饼”式的蔓延扩张带来城市土地利用格局剧烈变化,同时人为热排放增加,绿地减少,这些使得城市热岛现象变得越来越严重。城市热岛效应严重影响了城市内部的各种生态过程,破坏了城市生态系统的平衡。因此,如何缓解热岛效应成为各专业科学工作者的研究热点。当前,越来越多的研究着眼于对城市热场的分布特征、热岛效应的空间布局和影响因子等,这些研究为建筑设计、城市规划建设和环境管理等提供了科学依据。 本文在综述城市热岛效应研究的基础上,针对目前研究中存在的问题,综合利用移动样带法、定点观测法和遥感定量分析法,在局部地区和城市尺度分别对北京市的热岛效应进行观测、评价,分析了城市热岛强度与土地利用因子、工业格局之间的关系,最后提出缓解城市热岛效应的对策,并重点描述了“冷桥系统”的构建。观测结果表明: 1、北京市中轴线上的热场呈“M”型分布,即二环内部温度相对较低,三环至五环温度升高,而后又下降。这主要是由于二环内传感器接受的辐射强度小、人为热排放少、植被绿化完善和建筑、道路尺度较小所造成的。二环内部存在低温区,证明二环以内仍然具备良好的人居环境。 2、城市各种土地利用类型中,林地的降温效果最显著,而不透水地面(不包括建筑)的增温效果最显著,且它们对热环境的影响范围都在1 km以内。鉴于林地和不透水地面(不包括建筑)的这个特性,在规划城市冷桥系统时可以以1 km为基本单元,以有效缓解城市热岛效应。 3、利用遥感手段对城市热岛效应的研究发现,城市工业布局和城市化发展趋势与热岛效应的空间分布具有高度的一致性,且工业区的热岛强度极显著高于建成区。统计结果表明,北京市五环内的亮度温度的热岛强度为3.81 K,其中二环内的热岛强度为4.03 K,三环内的热岛强度为3.90 K,四环内的热岛强度为3.88 K。 最后,文章提出了缓解城市热岛效应的对策。除了传统的增加绿地,减少热排放和大气污染等方法以外,本文着重从调整城市格局的角度提出了城市冷桥系统的概念与构建方法,并以北京市做案例分析。构建冷桥系统可以促进城乡间的气体交换,有效完善城市的景观安全格局,保证城市的生态安全,从而最终达到改善城市人居环境,保障居民身心健康的目的。
Resumo:
高能炸药爆轰爆炸在极短的时间内产生强烈的冲击波,对周边的结构造成严重的破坏,并导致附近人员的伤亡.水幕减爆作为一种新颖的防护技术,通过在装药或者需要保护结构的外面布置水袋,利用水的加热、压缩和蒸发转移爆炸产生的能量,改变爆炸冲击波的传播方式,减弱爆炸冲击波的影响.建立安全可靠、稳定有效的水幕减爆装置需要大量的参数分析,从而进行优化设计.数值实验仿真提供了研究水幕减爆成本低廉并且没有任何危险的可行方式.传统的网格方法模拟水幕减爆问题存在很多困难.该文应用无网格粒子方法SPH对不同状况下的水幕减爆问题进行了一系列研究,得到一些初步的研究结果,对水幕减爆防护装置的设计和布置具有一定的指导意义.