40 resultados para mild intellectual disability
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Liquid phase hydrodechlorination of chlorinated benzenes was studied over Ni/active carbon (Ni/AC), Ni/gamma-Al2O3, Ni/SiO2 and Raney Ni. The complete dechlorination of chlorobenzene (ClBz) was realized at 333-343 K on Ni/AC under hydrogen atmosphere of 1.0 MPa in the presence of alkaline hydroxide. Dichloro- and trichlorobenzenes were also hydrodechlorinated with 50-95% yields of benzene under the similar conditions, as above. The reaction follows zero-order to ClBz concentration and 1.9 order to hydrogen pressure. The reaction does not proceed in the absence of alkaline hydroxide, suggesting the complete coverage of active nickel surface with produced chlorine and the removal of the chlorine ion with hydroxide ion as a rate-limiting step. The active catalysts were characterized by H-2 chemisorption and transmission electron microscopy techniques. The apparent activity strongly depends on the active area of nickel on catalyst surface. (C) 2004 Published by Elsevier B.V.
Resumo:
In this paper, we introduced a novel bonding method of glass wafers by Diels-Alder reaction at mild temperature. After standard hydroxylization and aminosilylation, two wafers were modified by 2-furaldehyde and maleic anhydride, respectively. Then they were brought into close contact and tightly held with a clamping fixture. A strong bonding could be achieved by annealing for 5 h at 200 degrees C. Bonding strength is as high as 1.78 MPa and sufficient for most application of microfluidic chips.
Resumo:
Through a facile solvothermal route using zinc chloride and thiourea as reactants, wurtzite ZnS and its precursor ZnS center dot (en)(0.5) (en = ethylenediamine) with various morphologies and sizes were grown, which were characterized by XRD, SEM, TEM and N-2 adsorption and so on. The phase evolution, composition and morphologies of the products are highly dependent on the concentration of en. By keeping the en-water volume ratio at 1/2 to 1, the nanostripes-flower or nanorod-spheric wurtzite ZnS were easily obtained under 120 degrees C for 6-24 h, which possess relatively higher specific surface area and larger total pore volume.
Resumo:
Based on the implications of a pellet experiment,we have designed and implemented a low temperature(≤90℃) approach to generate native patterned,vertically aligned ZnO nanoarrys without any templates or catalysts.This simple,economic and spontaneous patterning process offers a promising avenue for overcoming several inherent limitations of the artificial manners[1].While the purity,orientation and electrical properties of the as prepared materials allow them to be applied in various fields.
Resumo:
Anticorrosion performances of polyaniline emeraldine base/epoxy resin (EB/ER) coating on mild steel in 3.5% NaCl solutions of various pH values were investigated by electrochemical impedance spectroscopy (EIS) for 150 days. In neutral solution (pH 6.1), EB/ER coating offered very efficient corrosion protection with respect to pure ER coating, especially when EB content was 5-10%. The impedance at 0.1 Hz of the coating increased in the first 1-40 immersion days and then remained constant above 10(9) Omega cm(2) until 150 days, which in combination with the observation of a Fe2O3/Fe3O4 passive film formed on steel confirmed that the protection of EB was mainly anodic. In acidic or basic solution (pH 1 or 13), EB/ER coating also performed much better than pure ER coating. However, these media weakened the corrosion resistance due to breakdown of the passive film or deterioration of the ER binder.
Resumo:
Polyaniline emeraldine base/epoxy resin (EB/ER) coating was investigated for corrosion protection of mild steel coupled with copper in 3.5% NaCl solution. EB/ER coating with 5-10 wt% EB had long-term corrosion resistance on both uncoupled steel and copper due to the passivation effect of EB on the metal surfaces. During the 150 immersion days, the impedance at 0.1 Hz for the coating increased in the first 1-40 days and subsequently remained constant above 10(9) Omega cm(2), whereas that for pure ER coating fell below 10(6) Omega cm(2) after only 30 or 40 days. Immersion tests on coated steel-copper galvanic couple showed that EB/ER coating offered 100 times more protection than ER coating against steel dissolution and coating delamination on copper, which was mainly attributed to the passive metal oxide films formed by EB blocking both the anodic and cathodic reactions. Salt spray tests showed that 100 mu m EB/ER coating protected steel-copper couple for at least 2000 h.
Resumo:
In this paper, we presented a novel covalent bonding process between two quartz wafers at 300 degrees C. High-quality wafer bonding was formed by the hydroxylization, aminosilylation and atom transfer radical polymerization (ATRP) of glycidyl methacrylate (GMA), respectively, on quartz wafer surfaces, followed by close contact of the GMA functional wafer and the aminosilylation wafer, the epoxy group opening ring reaction was catalyzed by the amino and solidified to form the covalent bonding of the quartz wafers. The shear force between two wafers in all bonding samples was higher than 1.5 MPa. Microfluidic chips bonded by the above procedures had high transparency and the present procedure avoided the adhesive to block or flow into the channel.
Resumo:
Highly luminescent and monodisperse CdS nanocrystals (see Figure) have been synthesized using a two-phase approach. The synthesis of CdS nanocrystals at the liquid-liquid interface was easy, safe, and highly reproducible, and the reaction conditions were mild and controllable.
Resumo:
ZnO nanowires, nanorods and nanoparticles through modulating the ratio of water to methanol have been synthesized by using a mild and simple solution method. The as-prepared ZnO nanostructures have been characterized by atomic force microscopy and X-ray photoelectron spectroscopy. With the increase of the ratio of water to methanol, the morphology of ZnO nanostructures varied form denser nanowires, to sparse nanowires, to nanorods, and then to nanoparticles. The ratio of water to methanol is supposed to play an important role in the formation of ZnO nanostructures. The mechanism of formation is related to the chemical potential, which is simply proportional to their surface ratio.
Resumo:
The complex fluorides of AZnF(3) (A = Na, K), which are isostructural with perovskite phases were obtained by the method of hydrothermal synthesis at 160-220 degrees C. Compared with traditional high-temperature solid-state method, the products were pure and contained lower amount of oxygen.