133 resultados para microcrystalline cellulose

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

对15株白腐真菌进行了以玉米秸秆为基质的初步筛选,从中获得一株选择性系数较高的菌株Y10,并对其降解玉米秸秆的情况进行了研究。结果表明,在30天的培养过程中菌株Y10对玉米秸秆降解的选择性系数都大于1,第15天选择性系数最高为3.88。对未经降解和降解过的玉米秸秆分别作了紫外光谱和红外光谱分析,结果表明,经该菌降解后玉米秸秆的化学成分发生了很大变化,且木质素的降解程度要大于纤维素的降解程度。对菌株Y10进行了ITS-5.8S rDNA序列鉴定,初步判定其为Cerrena sp.。 为了考查不同的外源添加物对菌株Y10降解玉米秸秆的影响,在以玉米秸秆为基质的固态发酵培养基中分别添加了7种金属离子、8种碳源、6种氮源。结果显示,这7种金属离子均能促进木质素的降解,并且一定浓度的某些离子明显抑制纤维素的降解;其中添加0.036%的MnSO4·H2O和0.36%的MgSO4·7H2O对纤维素降解的抑制作用比较强,降解率分别为0.96%和1.31%,木质素的选择性系数分别达到了34.40和20.17。8种碳源中除麦芽糖外都能促进木质素的降解,除微晶纤维素外都明显促进纤维素的降解。6种氮源中酒石酸铵、硫酸铵、草酸铵和氯化铵的添加都会使该菌生长变慢,而且氮源浓度越高菌丝生长越慢。外加碳源和金属离子对半纤维素降解和选择性系数的影响不大。 同时对菌株Y10在液态培养下产木质素降解酶的条件和培养基做了优化。结果表明,在初始产酶培养基中,菌株Y10的漆酶酶活在第10d达到最高,锰过氧化物酶酶活在第11d达到最高,基本上检测不到木质素过氧化物酶。菌株Y10产漆酶的最适温度为32℃,最适PH为6.0;产锰过氧化物酶的最适温度为32℃,最适PH为6.5。菌株Y10产漆酶的最佳碳源为甘露糖,最佳氮源为酒石酸铵,最适诱导剂VA浓度为3 mmol/L,最适表面活性剂TW-80浓度为1%。 利用响应面法对其产漆酶的培养基进行优化,优化后的培养基配方为葡萄糖10.00 g/L,酒石酸铵0.50 g/L,大量元素296.50 ml/L,微量元素100.00 ml/L,NTA 1.40 g/L,VA 5.00 mmol/L,吐温-80加入量为0.10%。进行了菌株Y10产漆酶的验证实验,实测酶活为5282.56 U/L,与预测酶活5162.73 U/L接近。在优化后培养基中,菌株Y10在第14 d达到生长的最高峰,第20 d时,漆酶酶活最高,为11325.00 U/L;第16 d时,锰过氧化物酶酶活最高,为30.77 U/L。 对菌株Y10的漆酶酶学性质做了初步的研究,结果显示,酶反应的最适温度为40℃-65℃,最适PH为3.0。在40℃,PH=3.0时,漆酶催化ABTS反应的米氏方程为 。 Fifteen white-rot fungi based on corn stalk were screened. One white-rot fungus Y10 with high selectivity value was obtained. The degradation of corn stalk was initially studied. The results indicated that the selectivity value was above 1 during the 30 day-cultivation and the highest was 3.88 after 15 days. The composition of untreated and treated stalk was analyzed through ultraviolet spectroscopy and infrared spectroscopy. It was found that the composition of treated stalk was greatly altered and the degree of the degradation of lignin is greater than the cellulose. Y10 was identified as Cerrena sp. by ITS -5.8S rDNA sequence analysis. The influence of metal ions, carbon sources and nitrogen sources on corn stalk degradation by white-rot fungus was studied. While all seven metal ions could promote lignin degradation, the cellulose degradation was best inhibited at certain ion concentrations. Notably, when 0.036% MnSO4·H2O and 0.36% MgSO4·7H2O were added into the medium, the cellulose degradation was restrained to the extents that the coefficients of lignin selectivity rose to 34.40 and 20.17 respectively. It was also found that all carbon sources except maltose can promote lignin degradation. The addition of carbon sources other than microcrystalline cellulose significantly promoted cellulose degradation. The addition of the nitrogen sources, ammonium tartrate, ammonium sulfate, oxalate, ammonium chloride, resulted in remarkable inhibition to mycelium growth; the larger the concentrations of nitrogen sources are, the slower the mycelium grew. The addition of carbon sources and metal ions had less impact on the degradation of hemicellulose and selectivity value. Meanwhile, we optimized the conditions and culture medium of the lignin-degrading enzyme production of strain Y10. The results showed that in the initial culture medium, the Lac activity was highest at the 10th day, the MnP activity was highest at the 11th day and the LiP could not be detected. The optimum condition of Lac was at temperature 32 and PH =6.0 and the optimum condition of MnP was at temperature 32 and PH =6.5. The optimum carbon source for Lac was seminose, the optimum nitrogen source was ammonium tartrate, the optimum content of VA was 3 mmol/L, the optimum content of TW-80 was 1%. PB and RSM were used to optimize the culture medium of laccase by white-rot fungus Y10. The optimum culture medium was consist of glucose 10.00 g/L, ammonium tartrate 0.50 g/L, macro elements 296.50 ml/L, trace elements 100.00 ml/L, NTA 1.40 g/L, VA 5.00 mmol/L, TW-80 0.10%. Under the optimal conditions, the activity of laccase was 5282.56 U/L and the experimental value agreed with the predicted value 5162.73 U/L. The biomass was highest at the 14th day, the Lac activity was highest at the 20th day, the MnP activity was highest at the 16th day. The results of the studies on the characteristics of Lac showed that the optimum temperature for Lac activity is 40℃-65℃ ; the optimum PH for Lac activity is 3.0 and under 40℃,PH=3.0, the Michaelis-menten equation of Lac catalized ABTS oxidation was .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogenated microcrystalline silicon (mu c-Si:H) thin films were prepared by high-pressure radio-frequency (13.56 MHz) plasma enhanced chemical vapor deposition (rf-PECVD) with a screened plasma. The deposition rate and crystallinity varying with the deposition pressure, rf power, hydrogen dilution ratio and electrodes distance were systematically studied. By optimizing the deposition parameters the device quality mu c-Si:H films have been achieved with a high deposition rate of 7.8 angstrom/s at a high pressure. The V-oc of 560 mV and the FF of 0.70 have been achieved for a single-junction mu c-Si:H p-i-n solar cell at a deposition rate of 7.8 angstrom/s.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The density of states (DOS) above Fermi level of hydrogenated microcrystalline silicon (mu c-Si H) films is correlated to the material microstructure. We use Raman scattering and infrared absorption spectra to characterize the structure of the films made with different hydrogen dilution ratios. The DOS of the films is examined by modulated photocurrent measurement. The results have been accounted for in the framework of a three-phase model comprised of amorphous and crystalline components, with the grain boundary as the third phase. We observed that the DOS increases monotonically as the grain boundary volume fractions f(gb) is increased, which indicates a positive correlation between the DOS and the grain boundary volume fraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrogen dilution profiling (HDP) technique has been developed to improve the quality and the crystalline uniformity in the growth direction of mu c-Si:H thin films prepared by hot-wire chemical-vapor deposition. The high H dilution in the initial growth stage reduces the amorphous transition layer from 30-50 to less than 10 nm. The uniformity of crystalline content X-c in the growth direction was much improved by the proper design of hydrogen dilution profiling which effectively controls the nonuniform transition region of Xc from 300 to less than 30 nm. Furthermore, the HDP approach restrains the formation of microvoids in mu c-Si: H thin films with a high Xc and enhances the compactness of the film. As a result the stability of mu c-Si: H thin films by HDP against the oxygen diffusion, as well as the electrical property, is much improved. (c) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of hydrogenated silicon films near the threshold of crystallinity was prepared by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) from a mixture of SiH4 diluted in H, The effect of hydrogen dilution ratios R-H = [H-2]/[SiH4] on microstructure of the films was investigated. Photoelectronic properties and stability of the films were studied as a function of crystalline fraction. The results show that more the crystalline volume fraction in the silicon films, the higher mobility life-time product (mu tau), better the stability and lower the photosensitivity. Those diphasic films contained 8%-31% crystalline volume fraction can gain both the fine photoelectronic properties and high stability. in the diphasic (contained 12% crystalline volume fraction) solar cell, we obtained a much lower light-induced degradation of similar to 2.9%, with a high initial efficiency of 10.01% and a stabilized efficiency of 9.72% (AM1.5, 100 mW/cm(2)). (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of hydrogenated silicon films near the threshold of crystallinity was prepared by very high frequency plasmaenhanced chemical vapor deposition (VHF-PECVD)from a mixture of SiH4 diluted in H-2. The effect of hydrogen dilution ratios R = [H-2]/[SiH4] on the microstructure of the films was investigated. The photoelectronic properties and stability of the films were studied as a function of crystalline fraction. The results show that the diphasic films gain both the fine photoelectric properties like a-Si: H and high stability like mu w-Si:H. By using the diphasic silicon films as the intrinsic layer, p-i-n junction solar cells were prepared. Current-voltage (J-V) characteristics and stability of the solar cells were measured under an AM1.5 solar simulator. We observed a light-induced increase of 5.2% in the open-circuit voltage (V-oc) and a light-induced degradation of similar to 2.9% inefficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructures of hydrogenated microcrystalline silicon (tic-Si: H) thin films, prepared by plasma-enhanced chemical vapor deposition (PECVD), hot wire CVD(HWCVD) and plasma assisted HWCVD (PE-HWCVD), have been analyzed by the small angle x-ray scattering(SAXS) measurement. The SAXS data show that the microstructures of the μ c-Si: H films display different characteristics for different deposition techniques. For films deposited by PECVD, the volume fraction of micro-voids and mean size are smaller than those in HWCVD sample. Aided by suitable ion-bombardment, PE-HWCVD samples show a more compact structure than the HWCVD sample. The microstructure parameters of the μ c-Si: H thin films deposited by two-steps HWCVD and PE-HWCVD with Ar ions are evidently improved. The result of 45° tilting SAXS measurement indicates that the distribution of micro-voids in the film is anisotropic. The Fouriertransform infrared spectra confirm the SAXS data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microcrystalline silicon thin films at different growth stages were prepared by hot wire chemical vapor deposition. Atomic force microscopy has been applied to investigate the evolution of surface topography of these films. According to the fractal analysis I it was found that, the growth of Si film deposited on glass substrate is the zero-diffused stochastic deposition; while for the film on Si substrate, it is the finite diffused deposition on the initial growth stage, and transforms to the zero-diffused stochastic deposition when the film thickness reaches a certain value. The film thickness dependence of island density shows that a maximum of island density appears at the critical film thickness for both substrates. The data of Raman spectra approve that, on the glass substrate, the a-Si: H/mu c-Si:H transition is related to the critical film thickness. Different substrate materials directly affect the surface diffusion ability of radicals, resulting in the difference of growth modes on the earlier growth stage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel hydrogen dilution profiling (HDP) technique was developed to improve the uniformity in the growth direction of mu c-Si:H thin films prepared by hot wire chemical vapor deposition (HWCVD). It was found that the high H dilution ratio reduces the incubation layer from 30 nm to less than 10 nm. A proper design of hydrogen dilution profiling improves the uniformity of crystalline content, X-c, in the growth direction and restrains the formation of micro-voids as well. As a result the compactness of mu c-Si:H films with a high crystalline content is enhanced and the stability of mu c-Si:H thin film against the oxygen diffusion is much improved. Meanwhile the HDP mu c-Si:H films exhibit the low defect states. The high nucleation density from high hydrogen dilution at early stage is a critical parameter to improve the quality of mu c-Si:H films. (c) 2006 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Undoped hydrogenated microcrystalline silicon (mu c-Si:H) thin films were prepared at low temperature by hot wire chemical vapor deposition (HWCVD). Microstructures of the mu c-Si:H films with different H-2/SiH4 ratios and deposition pressures have been characterized by infrared spectroscopy X-ray diffraction (XRD), Raman scattering, Fourier transform (FTIR), cross-sectional transmission electron microscopy (TEM) and small angle X-ray scattering (SAX). The crystallization of silicon thin film was enhanced by hydrogen dilution and deposition pressure. The TEM result shows the columnar growth of mu c-Si:H thin films. An initial microcrystalline Si layer on the glass substrate, instead of the amorphous layer commonly observed in plasma enhanced chemical vapor deposition (PECVD), was observed from TEM and backside incident Raman spectra. The SAXS data indicate an enhancement of the mass density of mu c-Si:H films by hydrogen dilution. Finally, combining the FTIR data with the SAXS experiment suggests that the Si--H bonds in mu c-Si:H and in polycrystalline Si thin films are located at the grain boundaries. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel hydrogen dilution profiling (HDP) technique was developed to improve the uniformity in the growth direction of mu c-Si:H thin films prepared by hot wire chemical vapor deposition (HWCVD). It was found that the high H dilution ratio reduces the incubation layer from 30 nm to less than 10 nm. A proper design of hydrogen dilution profiling improves the uniformity of crystalline content, X-c, in the growth direction and restrains the formation of micro-voids as well. As a result the compactness of mu c-Si:H films with a high crystalline content is enhanced and the stability of mu c-Si:H thin film against the oxygen diffusion is much improved. Meanwhile the HDP mu c-Si:H films exhibit the low defect states. The high nucleation density from high hydrogen dilution at early stage is a critical parameter to improve the quality of mu c-Si:H films. (c) 2006 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microcrystalline silicon films were deposited by very high frequency (VHF) plasma-enhanced chemical vapor deposition (PECVD) with different hydrogen dilution. The microstructure of these films was investigated using Raman spectroscopy and infrared absorption (IR) spectra. The crystalline, amorphous, and grain boundary volume fractions X-c, X-a and X-gb were estimated from Raman measurements. An interface structure factor (R-if) is proposed to characterize the grain boundary volume fractions in IR spectroscopy. The density of states (DOS) of the microcrystalline crystalline silicon films were studied by phase-shift analysis of modulated photocurrent (MPC) and photoconductivity spectroscopy. It was observed that DOS increases with increasing grain boundary volume fractions, while the values of electron mobility-lifetime product mu T-e(e) disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enzymatic hydrolysis of cellulose was highly complex because of the unclear enzymatic mechanism and many factors that affect the heterogeneous system. Therefore, it is difficult to build a theoretical model to study cellulose hydrolysis by cellulase. Artificial neural network (ANN) was used to simulate and predict this enzymatic reaction and compared with the response surface model (RSM). The independent variables were cellulase amount X-1, substrate concentration X-2, and reaction time X-3, and the response variables were reducing sugar concentration Y-1 and transformation rate of the raw material Y-2. The experimental results showed that ANN was much more suitable for studying the kinetics of the enzymatic hydrolysis than RSM. During the simulation process, relative errors produced by the ANN model were apparently smaller than that by RSM except one and the central experimental points. During the prediction process, values produced by the ANN model were much closer to the experimental values than that produced by RSM. These showed that ANN is a persuasive tool that can be used for studying the kinetics of cellulose hydrolysis catalyzed by cellulase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that the value of room-temperature conductivity sigma(RT) of boron-doped silicon films is one order lower than that of phosphorus-doped silicon films, when they are deposited in an identical plasma-enhanced chemical vapour deposition system. We use surface acoustic wave and secondary-ion mass spectrometry techniques to measure the concentration of total and electrically active boron atoms. It is shown that only 0.7% of the total amount of incorporated boron is electrically active. This is evidence that hydrogen atoms can passivate substitutional B-Si bonds by forming the neutral B-H-Si complex. By irradiating the boron-doped samples with a low-energy electron beam, the neutral B-H-Si complex converts into electrically active B-Si bonds and the conductivity can be increased by about one order of magnitude, up to the same level as that of phosphorus-doped samples.