111 resultados para membrane materials

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel sulfonated poly(arylene-co-imide)s were synthesized by Ni(0) catalytic copolymerization of sodium 3-(2,5-dichlorobenzoyl)benzenesulfonate and naphthalimide dichloride monomer. The synthesized copolymers with the - SO3H group on the side-chain of polymers possessed high molecular weights revealed by their high viscosity and the formation of tough and flexible membranes. Because of the introduction of electron donating phenoxy groups into naphthalimide moieties, the hydrolysis of the imide rings was depressed. The resulting copolymers exhibited excellent water stability. The copolymer membranes display no apparently change in appearance, flexibility, and toughness after a soaking treatment in pressurized water at 140 degrees C for 250 h.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sodium sulfonate-functionalized polyether ether ketone)s derived from Bisphenol A with a degree of sulfonation up to 2.0 were synthesized by aromatic nucleophilic polycondensation of various amounts of 5,5-carbonylbis(2-fluorobenzenesulfonate) (1), 4,4'-diflurobenzophenone (2) and Bisphenol A (2). Copolymers showed excellent thermal stability and good mechanical properties. The selectivity of water vapor over nitrogen of membranes prepared from copolymers 3a and 3h was determined to be 3.43 x 10(6) and 1.05 x 10(7), respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zirconium-doped perovskite-type membrane materials of BaCo0.4Fe0.6-xZrxO3-delta (x = 0-0.4) with mixed oxygen ion and electron conductivity were synthesized through a method of combining citric and EDTA acid complexes. The results of X-ray diffraction (XRD), oxygen temperature-programmed desorption (O-2-TPD) and hydrogen temperature-programmed reduction (H-2-TPR) showed that the incorporation of proper amount of zirconium into BaCo0.4Fe0.6O3-delta could stabilize the ideal and cubic structure of perovskite. Studies on the oxygen permeability of the as-synthesized membrane disks under air/He gradient indicated that the content of zirconium in these materials had great effects on oxygen permeation flux, activation energy for oxygen permeation and operation stability. The high oxygen permeation flux of 0.90 ml cm(-2) min(-1) at 950degreesC, the single activation energy for oxygen permeation in the range of 600-950 degreesC and the long-term operation stability at a relatively lower operational temperature of 800 degreesC under air/He gradient were achieved for the BaCo0.4Fe0.4Zr0.2O3-delta material. Meanwhile, the effect of carbon dioxide on structural stability and oxygen permeability of this material was also studied in detail, which revealed that the reversible stability could be attained for it. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the past 22 months, the preparation and application of novel porous metal/ceramic membrane materials have been extensively explored in the area of membrane science and catalysis. Thus, new preparation methods and new application concepts in membrane catalysis have been developed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Blend modified polyimide (PI) hollow fiber membranes were used in vapor permeation for gas phase dehydration of ethanol. Dry air sweeping operation was used and the dry air was supplied by a dehumidification membrane module of compressed air. An integrated membrane process was composed. The effects of some factors, such as the modification of membrane materials, the humidity and current velocity of sweeping air, the operation temperature, on the efficiency of dehydration were discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, oxygen permeable membrane used in membrane reactor for selective oxidation of alkanes will be discussed in detail. The recent developments for the membrane materials will be presented, and the strategy for the selection of the membrane materials will be outlined. The main applications of oxygen permeable membrane in selective oxidation of light alkanes will be summarized, which includes partial oxidation of methane (POM) to syngas and partial oxidation of heptane (POH) to produce H-2, oxidative coupling of methane (OCM) to C-2, oxidative dehydrogenation of ethane (ODE) to ethylene and oxidative dehydrogenation of propane (ODP) to propylene. Achievements for the membrane material developments and selective oxidation of light alkanes in membrane reactor in our group are highlighted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The organic/inorganic nanocomposites polymer electrolytes were designed and synthesized. The organic/inorganic nanocomposites membrane materials and their lithium salt complexes have been found thermally stable below 200 degrees C. The conductivity of the organic/inorganic nanocomposites polymer electrolytes prepared at room temperature was at magnitude range of 10(-6) S/cm. (c) 2007 Li Qi. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new class of high-performance materials, fluorinated poly(phenylene-co-imide)s, were prepared by Ni(0)-catalytic coupling of 2,5-dichlorobenzophenone with fluorinated dichlorophthalimide. The synthesized copolymers have high molecular weights ((M) over bar (W)= 5.74 x 10(4)-17.3 x 10(4) g center dot mol(-1)), and a combination of desirable properties such as high solubility in common organic solvent, film-forming ability, and excellent mechanical properties. The glass transition temperature (T(g)s) of the copolymers was readily tuned to be between 219 and 354 degrees C via systematic variation of the ratio of the two comonomers. The tough polymer films, obtained by casting from solution, had tensile strength, elongation at break, and tensile modulus values in the range of 66.7-266 MPa, 2.7-13.5%, and 3.13-4.09 GPa, respectively. The oxygen permeability coefficients (P-O2) and permeability selectivity of oxygen to nitrogen (P-O2/P-N2) of these copolymer membranes were in the range of 0.78-3.01 barrer [1 barrer = 10(-10) cm(3) (STP) cm/(cm(2) center dot s center dot cmHg)] and 5.09-6.2 5, respectively. Consequently, these materials have shown promise as engineering plastics and gas-separation membrane materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biosensors have experienced rapid, extensive development. To maintain the bioactivity of biomolecules and to give the electrochemical output signal required, appropriate bioimmobilization matrices for biomolecules are critical.In this review, we describe some advanced membrane materials (including hydrogels, sol-gel-derived organic-inorganic composites and lipid membranes), introduce electrochemical biosensors based on bioimmobilization materials and describe their performance.Biosensors operating in extreme conditions and displaying direct electron transfer with electrodes based on these advanced membrane materials are attractive. Recent developments in nanomaterials include biosensors, so we emphasize the intersection of nanomaterials with advanced membrane materials in biosensors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is found that there is a linear relationship between log P-w, and the parameter term V-f/0.5 E(coh) [1+(delta(w) - delta(p))(2)/delta(p)(2), from the water permeability (P-w) data of 21 polymers covering 4 orders of magnitude. This correlation may be useful in choosing membrane materials for dehumidification of gases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A method for the prediction of gas permeabilities (P) through polymers from their chemical structure has been developed on the basis of the ratio of molar free volume to molar cohesive energy, V(f)/E(coh). The permeation of small gas molecules through polymer membranes is dependent on the chain packing density measured by V(f) and segmental motion of polymer chains measured by E(coh). But no simple relationship between P and V(f) or E(coh) alone was found. The permeability data of more than 60 polymers covering 7 orders of magnitude for six gases have been treated with linear regression analysis. All plots of log P vs. V(f)/E(coh) gave good straight lines. It is also found that a linear relationship holds when plotting both the intercepts and slopes of log P vs. V(f)/E(coh) lines against square of the diameters of gas molecules. Therefore, the permeabilities of all the non-swelling gases through a great variety of polymers can be estimated using two correlations above. Moreover, this method is more accurate than others in the literature and may found useful for the selection of gas separation or barrier membrane materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detailed investigations on the microstructure and the mechanical properties of the wing membrane of the dragonfly were carried out. It was found that in the direction of the thickness the membrane was divided into three layers rather than as traditionally considered as a single entity, and on the surfaces the membrane displayed a random distribution rough microstructure that was composed of numerous nanometer scale columns coated by the cuticle wax secreted. The characteristics of the surfaces were accurately measured and a statistical radial distribution function of the columns was presented to describe the structural properties of the surfaces. Based on the surface microstructure, the mechanical properties of the membranes taken separately from the wings of living and dead dragonflies were investigated by the nanoindentation technique. The Young's moduli obtained here are approximately two times greater than the previous result, and the reasons that yield the difference are discussed. (C) 2007 Elsevier B.V. All rights reserved.