12 resultados para master-planned
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
In this paper, the spectral relation between the master and the frequency-locked slave laser (FLSL) is investigated by the conventional technique of optical intensity modulation and optical heterodyne. Experimentally, we demonstrate that under complete and stable locking condition, the lightwave of the FLSL and the sidebands of the master laser produced by the optical intensity modulation are perfectly coherent (frequency coherence). Referring to our recent studies, the lightwave of the master laser and its corresponding sidebands are also perfectly coherent. Additionally, the spectral structures of two perfectly coherent lightwaves are identical in the level of wave train. Therefore, we indirectly verify that the spectral structures of the FLSL and the master laser are identical in the level of wave train.
Resumo:
Quantum measurement of a solid-state qubit by a mesoscopic detector is of fundamental interest in quantum physics and an essential issue in quantum computing. In this work, by employing a unified quantum master equation approach constructed in our recent publications, we study the measurement-induced relaxation and dephasing of the coupled-quantum-dot states measured by a quantum-point contact. Our treatment pays particular attention on the detailed-balance relation, which is a consequence of properly accounting for the energy exchange between the qubit and detector during the measurement process. As a result, our theory is applicable to measurement at arbitrary voltage and temperature. Both numerical and analytical results for the qubit relaxation and dephasing are carried out, and important features are highlighted in concern with their possible relevance to future experiments.
Resumo:
For quantum transport through mesoscopic systems, a quantum master-equation approach is developed in terms of compact expressions for the transport current and the reduced density matrix of the system. The present work is an extension of Gurvitz's approach for quantum transport and quantum measurement, namely, to finite temperature and arbitrary bias voltage. Our derivation starts from a second-order cumulant expansion of the tunneling Hamiltonian; then follows the conditional average over the electrode reservoir states. As a consequence, in the usual weak-tunneling regime, the established formalism is applicable for a wide range of transport problems. The validity of the formalism and its convenience in application are well illustrated by a number of examples.
Resumo:
An exact quantum master equation formalism is constructed for the efficient evaluation of quantum non-Markovian dissipation beyond the weak system-bath interaction regime in the presence of time-dependent external field. A novel truncation scheme is further proposed and compared with other approaches to close the resulting hierarchically coupled equations of motion. The interplay between system-bath interaction strength, non-Markovian property, and required level of hierarchy is also demonstrated with the aid of simple spin-boson systems. (C) 2005 American Institute of Physics.
Resumo:
Based on our recent work on quantum transport [X. Q. Li , Phys. Rev. B 71, 205304 (2005)], we show how an efficient calculation can be performed for the current noise spectrum. Compared to the classical rate equation or the quantum trajectory method, the proposed approach is capable of tackling both the many-body Coulomb interaction and quantum coherence on an equal footing. The practical applications are illustrated by transport through quantum dots. We find that this alternative approach is in a certain sense simpler and more straightforward than the well-known Landauer-Buttiker scattering matrix theory.
Resumo:
Conventional quantum trajectory theory developed in quantum optics is largely based on the physical unravelling of a Lindblad-type master equation, which constitutes the theoretical basis of continuous quantum measurement and feedback control. In this work, in the context of continuous quantum measurement and feedback control of a solid-state charge qubit, we present a physical unravelling scheme of a non-Lindblad-type master equation. Self-consistency and numerical efficiency are well demonstrated. In particular, the control effect is manifested in the detector noise spectrum, and the effect of measurement voltage is discussed.
Resumo:
In this work a practical scheme is developed for the first-principles study of time-dependent quantum transport. The basic idea is to combine the transport master equation with the well-known time-dependent density functional theory. The key ingredients of this paper include (i) the partitioning-free initial condition and the consideration of the time-dependent bias voltages which base our treatment on the Runge-Gross existence theorem; (ii) the non-Markovian master equation for the reduced (many-body) central system (i.e., the device); and (iii) the construction of Kohn-Sham master equations for the reduced single-particle density matrix, where a number of auxiliary functions are introduced and their equations of motion (EOMs) are established based on the technique of spectral decomposition. As a result, starting with a well-defined initial state, the time-dependent transport current can be calculated simultaneously along with the propagation of the Kohn-Sham master equation and the EOMs of the auxiliary functions.
Resumo:
To meet the requirements of providing high-intensity heavy ion beams the direct plasma injection scheme (DPIS) was proposed by a RIKEN-CNS-TIT collaboration. In this scheme a radio frequency quadrupole (RFQ) was joined directly with the laser ion source (LIS) without a low-energy beam transport (LEBT) line. To find the best design of the RFQ that will have short length, high transmission efficiency and small emittance growth, beam dynamics designs with equipartitioning design strategy and with matched-only design strategy have been performed, and a comparison of their results has also been done. Impacts of the input beam parameters on transmission efficiency are presented, too. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
An electrolysis technique for co-deposition of Ca2+ and Na+ at the liquid lead cathode was put forward. The experiment was carried out at an electrolysis temperature below 650 degrees C and had a current efficiency of 98%, which are respectively 100 similar to 300 degrees C lower and 15% similar to 30% higher than those reported both at home and abroad.