50 resultados para massive QED

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A feasible scheme for constructing quantum logic gates is proposed on the basis of quantum switches in cavity QED. It is shown that the light field which is fed into the cavity due to the passage of an atom in a certain state can be used to manipulate the conditioned quantum logical gate. In our scheme, the quantum information is encoded in the states of Rydberg atoms and the cavity mode is not used as logical qubits or as a communicating "bus"; thus, the effect of atomic spontaneous emission can be neglected and the strict requirements for the cavity can be relaxed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a scheme for implementing the unconventional geometric two-qubit phase gate with nonzero dynamical phase based on two-channel Raman interaction of two atoms in a cavity. We show that the dynamical phase and the total phase for a cyclic evolution are proportional to the geometric phase in the same cyclic evolution; hence they possess the same geometric features as does the geometric phase. In our scheme, the atomic excited state is adiabatically eliminated, and the operation of the proposed logic gate involves only the metastable states of the atoms; thus the effect of the atomic spontaneous emission can be neglected. The influence of the cavity decay on our scheme is examined. It is found that the relations regarding the dynamical phase, the total phase, and the geometric phase in the ideal situation are still valid in the case of weak cavity decay. Feasibility and the effect of the phase fluctuations of the driving laser fields are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a scheme to generate maximally entangled states (MESs) of multiple three-level atoms in microwave cavity QED based on the resonant atom-cavity interaction. In the scheme, multiple three-level atoms initially in their ground states are sequently sent through two suitably prepared cavities. After a process of appropriate atom-cavity interaction, a subsequent measurement on the second cavity field projects the atoms onto the MESs. The practical feasibility of this method is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a scheme to generate a supersinglet of three three-level atoms in microwave cavity quantum electrodynamics based on the resonant atom-cavity interaction. In the scheme, three three-level atoms in suitable initial states are sequentially sent through three cavities originally prepared in their vacuum states. After an appropriate atom-cavity interaction process, in the subsequent measurement on the third cavity field the atoms are projected onto the desired supersinglet. The practical feasibility of this method is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the framework of a dinuclear system (DNS) model, the evaporation-residue excitation functions and the quasi-fission mass yields in the 48Ca induced fusion reactions are investigated systematically and compared with available experimental data. Maximal production cross sections of superheavy nuclei based on stable actinide targets are obtained. Isotopic trends in the production of the superheavy elements Z = 110, 112–118 based on the actinide isotopic targets are analyzed systematically. Optimal evaporation channels and combinations as well as the corresponding excitation energies are proposed. The possible factors that influencing the isotopic dependence of the production cross sections are analyzed. The formation of the superheavy nuclei based on the isotopes U with different projectiles are also investigated and calculated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the concept of the dinuclear system (DNS), a dynamical model is proposed for describing the formation of superheavy nuclei in complete fusion reactions by incorporating the coupling of the relative motion to the nucleon transfer process. The capture of two heavy colliding nuclei, the formation of the compound nucleus and the de-excitation process are calculated by using an empirical coupled channel model, solving a set of microscopically derived master equations numerically and applying statistical theory, respectively.Fusion-fission reactions and evaporation residue excitation functions of synthesizing superheavy nuclei (SHN)are investigated systematically and compared them with available experimental data. The possible factors that affecting the production cross sections of SHN are discussed in this workshop.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A master equation is constructed to treat the nucleon transfer process in heavy ion fusion reactions to form superheavy nucleus. The relative motion concerning the energy, the angular momentum and the fragment deformation relaxations is explicitly treated to couple with the diffusion process. The nucleon transition probabilities, which are derived microscopically, are thus time dependent. The calculated evaporation residue cross-sections for both cold and hot fusion are in good agreement with the known experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the concept of the dinuclear system (DNS), a dynamical model is used for describing the formation of superheavy residues in massive fusion reactions, in which the capture of two colliding nuclei, the formation and de-excitation of the compound nucleus are described by using a barrier distribution method, solving master equations numerically and statistical approach, respectively. Using the DNS model, the production cross sections of superheavy nuclei are calculated and compared with the available experimental data. The isotopic dependence of the cross sections to produce the superheavy element Z=116 by the two types of the reactions is discussed and the possible reasons influencing the isotopic trends are analyzed systematically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the framework of the dinuclear system (DNS) model, the production cross sections of superheavy nuclei Hs (Z=108) and Z=112 combined with different reaction systems are analyzed systematically. It is found that the mass asymmetries and the reaction Q values of the projectile target combinations play a very important role on the formation cross sections of the evaporation residues. Both methods to obtain the fusion probability by nucleon transfer by solving a set of microscopically derived master equations along the mass asymmetry degree of freedom (ID) and distinguishing protons and neutrons of fragments (2D) are compared with each other and also with the available experimental data. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Helium, neon and argon isotope compositions of fluid inclusions have been measured in massive sulfide samples from the Jade hydrothermal field in the central Okinawa Trough. Fluid-inclusion He-3/He-4 ratios are between 6.2 and 10.1 times the air value (Ra), and with a mean of 7.8Ra, which are consistent with the mid-ocean ridge basalt values [He-3/He-4 approximate to (6Rasimilar to 11Ra)]. Values for Ne-20/Ne-22 are from 10.7 to 11.3, which are significantly higher than the atmospheric ratio (9.8). And the fluid-inclusion Ar-40/Ar-36 ratios range from 287 to 334, which are close to the atmosperic values (295.5). These results indicate that the noble gases of trapped hydrothermal fluids in massive sulfides are a mixture of mantle- and seawater-derived components, and the helium of fluid inclusions is mainly from mantle, the nelium and argon isotope compositions are mainly from seawater.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal stability of Nd60Fe20Co10Al10 bulk metallic glass (BMG) has been studied by differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), isochronal dilatation and compression tests. The results show that the glass transition of the BMG takes place quite gradually between about 460 and 650 K at a heating rate of 0.17 K/s. Several transformation processes are observed during continuous heating with the first crystallization process beginning at about 460 K, while massive crystallization takes place near the solidus temperature of the alloy. The positive heat of mixing between the two major constituents, Nd and Fe, and, consequently, a highly inhomogeneous composition of the attained amorphous phase are responsible for the anomalous thermal stability in this system. (C) 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a Nd:glass microspherical cavity the enhancement and inhibition of spontaneous-emission processes that are due to cavity QED effects have been observed. The rates of the enhanced spontaneous emission are location dependent and reach a maximum value of more than 10(3) times the free-space value. The large enhancement strongly modifies the decay processes of Nd ions in glass, and the radiative properties of Nd:glass have been changed. As a result a new spectrum including new lasing wavelengths in the Nd:glass sphere has been observed.