21 resultados para mass-wind coupling

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose and analyse a new model of thermocapillary convection with evaporation in a cavity subjected to horizontal temperature gradient, rather than the previously studied model without evaporation. The pure liquid layer with a top free surface in contact with its own vapour is considered in microgravity condition. The computing programme developed for simulating this model integrates the two-dimensional, time-dependent Navier-Stokes equations and energy equation by a second-order accurate projection method. We focus on the coupling of evaporation and thermocapillary convection by investigating the influence of evaporation Biot number and Marangoni number on the interfacial mass and heat transfer. Three different regimes of the coupling mechanisms are found and explained from our numerical results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effects of lattice vibration on the system in which the electron is weakly coupled with bulk longitudinal optical phonons and strongly coupled with interface optical phonons in an infinite quantum well were studied by using Tokuda' linear-combination operator and a modified LLP variational method. The expressions for the effective mass of the polaron in a quantum well QW as functions of the well's width and temperature were derived. In particular, the law of the change of the vibration frequency of the polaron changing with well' s width and temperature are obtained. Numerical results of the effective mass and the vibration frequency of the polaron for KI/AgCl/Kl QW show that the vibration frequency and the effective mass of the polaron decrease with increasing well's width and temperature, but the contribution of the interaction between the electron and the different branches of phonons to the effective mass and the vibration frequency and the change of their variation with the well's width and temperature are greatly different.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the importance of investigation on terrestrical processes in arid areas for mankind's living environment protection and local economy development as well as its present state of the art are elucidated. A coupling model, which evaluates heat, mass, momentum and radiative fluxes in the SPAC system, is developed for simulating microclimate over plant and bare soil. Especially, it is focussed on the details of turbulence transfer. For illustration, numerical simulation of the water-heat exchange processes at Shapotou Observatory, GAS, Ninxia Province are conducted, and the computational results show that the laws of land-surface processes are rather typical in the arid areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The probability distribution of lift-off velocity of the saltating grains is a bridge to linking microscopic and macroscopic research of aeolian sand transport. The lift-off parameters of saltating grains (i.e., the horizontal and vertical lift-off velocities, resultant lift-off velocity, and lift-off angle) in a wind tunnel are measured by using a Phase Doppler Particle Analyzer (PDPA). The experimental results show that the probability distribution of horizontal lift-off velocity of saltating particles on a bed surface is a normal function, and that of vertical lift-off velocity is an exponential function. The probability distribution of resultant lift-off velocity of saltating grains can be expressed as a log-normal function, and that of lift-off angle complies with an exponential function. A numerical model for the vertical distribution of aeolian mass flux based on the probability distribution of lift-off velocity is established. The simulation gives a sand mass flux distribution which is consistent with the field data of Namikas (Namikas, S.L., 2003. Field measurement and numerical modelling of acolian mass flux distributions on a sandy beach, Sedimentology 50, 303-326). Therefore, these findings are helpful to further understand the probability characteristics of lift-off grains in aeolian sand transport. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present paper describes a numerical two-way coupling model for shock-induced laminar boundary-layer flows of a dust-laden gas and studies the transverse migration of fine particles under the action of Saffman lift force. The governing equations are formulated in the dilute two-phase continuum framework with consideration of the finiteness of the particle Reynolds and Knudsen numbers. The full Lagrangian method is explored for calculating the dispersed-phase flow fields (including the number density of particles) in the regions of intersecting particle trajectories. The computation results show a significant reaction of the particles on the two-phase boundary-layer structure when the mass loading ratio of particles takes finite values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A side-wall compression scramjet model with different combustor geometries has been tested in a propulsion tunnel that typically provides the testing flow with Mach number of 5.8, total temperature of 1800K, total pressure of 4.5MPa and mass flow rate of 4kg/s. This kerosene-fueled scramjet model consists of a side-wall compression inlet, a combustor and a thrust nozzle. A strut was used to increase the contraction ratio and to inject fuels, as well as a mixing enhancement device. Several wall cavities were also employed for flame-holding. In order to shorten the ignition delay time of the kerosene fuel, a little amount of hydrogen was used as a pilot flame. The pressure along the combustor has an evident raise after ignition occurred. Consequently thrust was observed during the fuel-on period. However, the thrust was still less than the drag of the scramjet model. For this reason, the drag variation produced by different strut and cavities was tested. Typical results showed that the cavities do not influence the drag so much, but the length of the strut does.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three major odorous compounds are 2-methylisoborneol ( 2-MIB), geosmin and beta-cyclocitral, which in water were determined by coupling headspace solid-phase microextraction ( HS-SPME) with gas chromatography-mass spectrometry (GC-MS). The operating conditions of HS-SPME, such as fibre type, salt concentration, water temperature, stirring, absorption time and desorption time were studied and discussed.The highest absorption of the odorous compounds were obtained under the following operating conditions as the addition of 30% ( m/V) NaCl, stirring at 60 degrees C for 40 min, using 65 mu m polydimethyl siloxane/divinylbenzene coated fibre. After the odorous compounds had been absorbed in the fibre under the optimal conditions of HSSPME, they were desorbed at 250 degrees C and determined by GC-MS. The limits of detection for geosmin, beta-cyclocitral and 2-MIB in water were 1. 0, 1. 3, 1. 7 ng/L, and the relative standard deviations for them were 4. 9%, 8. 4%, 6. 2%,respectively. There were good linear correlation (the calibration coefficients were all above 0. 997) for the three odorous compounds in the range of 5 similar to 1000 ng/ L. Therefore, trace levels of the odorous compounds at ng/L in water could be quantified by the simple method with satisfactory result.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The center-of-mass motion of quasi-two-dimensional excitons with spin-orbit coupling is calculated within the framework of effective mass theory. The results indicate that the spin-orbit coupling will induce a controllable bright-to-dark transition in a quasi-two-dimensional exciton system. This procedure can work as a way to increase the lifetime of excitons. (c) 2008 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The center-of-mass motion of a quasi-two-dimensional exciton with spin-orbit coupling (SOC) in the presence of a perpendicular electric field is calculated by perturbation theory. The results indicate that a quasi-two-dimensional exciton with SOC can exhibit the spin Hall effect (SHE), which is similar to two-dimensional electrons and holes. A likely way to establish exciton SHE in experiments and a possible phase transition from dark to bright state driven by SOC are suggested. (c) 2007 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We deduce the eight-band effective-mass Hamiltonian model for a manganese-doped ZnSe quantum sphere in the presence of the magnetic field, including the interaction between the conduction and valence bands, the spin-orbit coupling within the valence bands, the intrinsic spin Zeeman splitting, and the sp-d exchange interaction between the carriers and magnetic ion in the mean-field approximation. The size dependence of the electron and hole energy levels as well as the giant Zeeman splitting energies are studied theoretically. We find that the hole giant Zeeman splitting energies decrease with the increasing radius, smaller than that in the bulk material, and are different for different J(z) states, which are caused by the quantum confinement effect. Because the quantum sphere restrains the excited Landau states and exciton states, in the experiments we can observe directly the Zeeman splitting of basic states. At low magnetic field, the total Zeeman splitting energy increases linearly with the increasing magnetic field and saturates at modest field which is in agreement with recent experimental results. Comparing to the undoped case, the Zeeman splitting energy is 445 times larger which provides us with wide freedom to tailor the electronic structure of DMS nanocrystals for technological applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the Rashba spin-orbit coupling brought by transverse electric field in InSb nanowires. In small k(z) (k(z) is the wave vector along the wire direction) range, the Rashba spin-orbit splitting energy has a linear relationship with k(z), so we can define a Rashba coefficient similarly to the quantum well case. We deduce some empirical formulas of the spin-orbit splitting energy and Rashba coefficient, and compare them with the effective-mass calculating results. It is interesting to find that the Rashba spin-orbit splitting energy decreases as k(z) increases when k(z) is large due to the k(z)-quadratic term in the band energy. The Rashba coefficient increases with increasing electric field, and shows a saturating trend when the electric field is large. As the radius increases, the Rashba coefficient increases at first, then decreases. The effects of magnetic fields along different directions are discussed. The case where the magnetic field is along the wire direction or the electric field direction are similar. The spin state in an energy band changes smoothly as k(z) changes. The case where the magnetic field is perpendicular to the wire direction and the electric field direction is quite different from the above two cases, the k(z)-positive and negative parts of the energy bands are not symmetrical, and the energy bands with different spins cross at a k(z)-nonzero point, where the spin splitting energy and the effective g factor are zero.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyclotron resonance in CdTe/CdMgTe quantum wells (QWs) was studied. Due to the polaron effect the zero-field effective mass is strongly influenced by the QW width. The experimental data have been described theoretically by taking into account electron-phonon coupling and the nonparabolicity of the conduction band. The subband structure was calculated self-consistently. The best fit was obtained for an electron-phonon coupling constant alpha = 0.3 and bare electron mass of m(b) = 0.092m(0).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electron cyclotron-resonance (CR) mass of quasi-two-dimensional electrons in GaN/AlxGa1-xN heterostructures is studied theoretically. The correction to the CR mass due to electron-phonon interaction is investigated, taking into account band nonparabolicity, the occupation effect, and the screening of the electron-phonon coupling. The dependence of the CR mass on the electron density and on the magnetic field strength is displayed in detail, and the calculated CR mass agrees well with a recent experiment. We found that the effective electron-phonon coupling strength in GaN heterostructures is reduced below the bulk value.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyclotron resonance in CdTe/CdMgTe quantum wells (QWs) was studied. Due to the polaron effect the zero-field effective mass is strongly influenced by the QW width. The experimental data have been described theoretically by taking into account electron-phonon coupling and the nonparabolicity of the conduction band. The subband structure was calculated self-consistently. The best fit was obtained for an electron-phonon coupling constant alpha = 0.3 and bare electron mass of m(b) = 0.092m(0).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The properties of hadronic matter at beta equilibrium in a wide range of densities are described by appropriate equations of state in the framework of the relativistic mean field model. Strange meson fields, namely the scalar meson field sigma*(975) and the vector meson field sigma*(1020), are included in the present work. We discuss and compare the results of the equation of state, nucleon effective mass, and strangeness fraction obtained by adopting the TM1, TMA, and GL parameter sets for nuclear sector and three different choices for the hyperon couplings. We find that the parameter set TM1 favours the onset of hyperons most, while at high densities the GL parameter set leads to the most hyperon-rich matter. For a certain parameter set (e.g. TM1), the most hyperon-rich matter is obtained for the hyperon potential model. The influence of the hyperon couplings on the effective mass of nucleon, is much weaker than that on the nucleon parameter set. The nonstrange mesons dominate essentially the global properties of dense hyperon matter. The hyperon potential model predicts the lowest value of the neutron star maximum mass of about 1.45 M-sun to be 0.4-0.5 M-sun lower than the prediction by using the other choices for hyperon couplings.