31 resultados para marine food chains
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Objective To study the transfer of paralytic shellfish toxins (PST) using four simulated marine food chains: dinoflagellate Alexandrium tamarense -> Arterriia Artemia salina -> Mysid shrimp Neomysis awatschensis; A. tamarense-N. awatschensis: A. taniarense A. salina -> Perch Lateolabrax japonicus; and A. tamarense -> L. japonicus. Methods The ingestion of A. tamarense, a producer of PST, by L. japonicus, N. awatschensis, and A. salina was first confirmed by microscopic observation of A. tamarense cells in the intestine samples of the three different organisms, and by the analysis of Chl.a levels iii the samples. Toxin accumulation in L. japonicus and N. awatschensis directly from the feeding on A. tamarense or indirectly ibrough the vector of A. salina was then studied. The toxicity of samples was measured using the AOAC mouse bioassay method, and the toxin content and profile of A. tamarense were analyzed by the HPLC method. Results Both A. salina and N. awatschensis could ingest A. tamarense cells. However, the ingestion capability of A. salina exceeded that of N. awatschensis. After the exposure to the culture of A. tamarense (2 000 cells(.)mL(-1)) for 70 minutes, the content of ChLa in A. salina and N. awatschensis reached 0.87 and 0.024 mu g-mg(-1), respectively. Besides, A. tamarense cells existed in the intestines of L. japonicus, N. awatschensis and A. salina by microscopic observation. Therefore, the three organisms could ingest A. tamarense cells directly. A. salina could accumulate high content of PST, and the toxicity of A. salina in samples collected on days 1, 4, and 5 of the experiment was 2.18, 2.6, and 2.1 MU(.)g(-1), respectively. All extracts from the samples could lead to death of tested mice within 7 minutes, and the toxin content in arternia sample collected on the 1st day was estimated to be 1.65x10(-5) pg STX equa Vindividual. Toxin accumulation in L. japonicus and N. awatschensis directly from the feeding on A. tamarense or indirectly froin the vector of A. salina was also studied. The mice injected with extracts from L. japonicus and N. awatschensis samples that accumulated PST either directly or indirectly showed PST intoxication symptoms, indicating that low levels of PST existed in these samples. Conclusion Paralytic shellfish toxins can be transferred to L. japonicus, N. awatschensis, and A. salina from A. taniarense directly or indirectly via the food chains.
Resumo:
This paper reports large variations in stable carbon and nitrogen isotope ratios of lake anchovy (Coilia ectenes taihuensis) from Lake Chaohu, China. The lake anchovy exhibited a significant C-13- and N-15- enrichment in relation to increasing fish length, and the isotopic compositions of small lake anchovy (<= 130 mm) were significantly more enriched than those of large lake anchovy (> 130 mm). The significant differences in the isotopic compositions of small and large lake anchovy suggested that their assimilated diets differed over a period of time and reflected the size-related diet shift of this fish. Bellamya aeruginosa and Corbicula fluminea were used to establish the baseline carbon signal of benthic and pelagic food webs, and these data were used to parameterize a 2-source mixing model to estimate in consumers the contribution of carbon derived from benthic versus pelagic food webs. Mixing models showed that small lake anchovy derived only 37% of their carbon from benthic food web, indicating increased reliance on pelagic prey, whereas benthic prey contributed 71% of large lake anchovy diet, suggesting greater use of benthic sources. These data indicate that there was a change in lake anchovy feeding strategy related to their size, suggesting a role in dynamic coupling between pelagic and benthic food chains. The trophic position of small lake anchovy averaged 3.0, indicating a zooplankton-based diet, compared with 3.6 in large lake anchovy, indicative of an increase in piscivorous diet. Overlap in the isotopic compositions of small and large lake anchovy probably indicated that these fish occasionally shared common diets, as suggested by stomach content studies, and/or resulted from the differences in the rate of isotopic turnover depending on differences in growth rate and metabolic turnover between small and large anchovy during diet shift from pelagic to benthic food webs. This study presents the contributions of benthic and pelagic food webs supporting lake anchovy and indicates that the intraspecific isotopic dynamic should be considered when applying stable isotope analyses to infer trophic interactions in aquatic ecosystems.
Resumo:
The relative compositions of bacterioplankton, phytoplankton, zooplankton and detritus of seston were studied during the course of inundation in a floodplain lake of central Changjiang (China). Peaks in bacterial biomass developed shortly after flooding, coinciding with the initial leaching of organic nutrients from vegetation submerged under floodwater, and again at high water, shortly before the climax of phytoplankton biomass. Rods predominated the bacterial carbon biomass. Phytoplankton developed a postflood bloom at initial falling, corresponding to the drainage of the lake water into the river. While minimal biomass occurred during the advent of flooding, most likely due to disturbance and dilution. Algal biomass was usually dominated by Chlorophyta. Highest biomass of zooplankton was recorded at the end of the flooding in connection with the decline in turbidity, and once again at early drainage, closely associated with high phytoplankton biomass. Copepods (mainly nauplii) always constituted the majority of zooplankton carbon biomass. Peaks in detrital carbon concentrations were recorded at rising and falling water phases, corresponding respectively to the riverine discharge and decomposition of macrophyte mats. At rising water phase, CPOC was abundant. While during other water phases, this predominance was shifted to FPOC alone. Taken together, average contribution of bacterioplankton, phytoplankton, zooplankton and detritus to total seston carbon was 3.29, 21.21, 6.83 and 68.67 %, respectively.
Resumo:
Hexachlorobenzene (HCB) is a chlorinated aromatic hydrocarbon that was widely used for seed dressing in prevention of fungal growth on crops, and also as a component of fireworks, ammunition, and synthetic rubbers. Because of its resistance to degradation and mobility, HCB is widely distributed throughout the environment and is accumulated through food chains in different ecosystems. In this study, a preliminary investigation was carried out on the bioaccumulation and the toxic effects of HCB in the microbial (protozoan in particular) communities in the Fuhe River, Wuhan, a water body receiving industrial wastewaters containing HCB and other pollutants, using the standardized polyurethane foam units (PFU) method. Field samples were taken from eight stations established along the Fuhe River in January and August 2006. The concentration ratios of HCB in microbial communities and in water were 9.66-18.64, and the microbial communities accumulated 13.29-56.88 mu g/L of HCB in January and 0.82-10.25 mu g/L HCB in August. Correlation analysis showed a negative correlation between the HCB contents in the microbial assemblage, and the number of species and the diversity index of the protozoan communities. This study demonstrated the applicability of the PFU method in monitoring the effects of HCB on the level of microbial communities.
Resumo:
Tissue distributions and seasonal dynamics of the hepatotoxic microcystins-LR and -RR in a freshwater snail (Bellamya aeruginosa) were studied monthly in a large shallow, eutrophic lake of the subtropical China during June-November, 2003. Microcystins (MCs) were quantitatively determined by High-Performance Liquid Chromatography (HPLC) with a qualitative analysis by a Finnigan LC-MS system. On the average of the study period, hepatopancreas was the highest in MC contents (mean 4.14 and range 1.06-7.42 mug g(-1) DW), followed by digestive tracts (mean 1.69 and range 0.8-4.54 mug g(-1) DW) and gonad (mean 0.715 and range 0-2.62 mug g(-1) DW), whereas foot was the least (mean 0.01 and range 0-0.06 mug g(-1) DW). There was a positive correlation in MC contents between digestive tracts and hepatopancreas. A constantly higher MC content in hepatopancreas than in digestive tracts indicates a substantial bioaccumulation of MCs in the hepatopancreas of the snail. The average ratio of MC-LR/MC-RR showed a steady increase from digestive tracts (0.44) to hepatopancreas (0.63) and to gonad (0.96), suggesting that MC-LR was more resistant to degradation in the snail. Since most MCs were present in the hepatopancreas, digestive tracts and gonad with only a very small amount in the edible foot, the risk to human health may not be significant if these toxic parts are removed prior to snail consumption. However, the possible transference of toxins along food chains should not be a negligible concern. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Detritus, as a nutrients reservoir, affects the trophic structure and dynamics of communities and supports a greater diversity of species and longer food chains. Detritivorous fish is an important organism to regenerate the nutrients from sediments. Despite the numerous studies on the nutrients cycle in fish, only a few attempts have been made to quantify the regenerating ability. In the present study, we chose the common detritivorous fish redeye mullet as the research object. Redeye mullet is also a common poly-culture fish in China. Diet, including a commercial diet mostly used in aquaculture and a home-made diet with contents close to detritus, was used and considered as a fixed factor. Temperature was also considered as a fixed factor as much research has shown that temperature has significant effects on fish metabolism. Moreover, body size was regarded as a covariate under analysis of covariance. Three key nutrients, namely carbon, nitrogen and phosphorus, were used to measure the nutrient-regenerating ability of redeye mullet under laboratory conditions. The results showed that the nutrient regeneration in percent of the consumption decreased with increasing temperature. Carbon and nitrogen regeneration of redeye mullet fed on commercial diet was lower than those of the home-made diet group, while the opposite was found for phosphorus. In each group, the amount of regenerated nutrients increased linearly with body size. Fed on the home-made diet, 5-g fish at 25 degrees C can regenerate 210.822 mg C, 37.533 mg N and 0.727 mg P per day.
Resumo:
Food consumption, number of movements and feeding hierarchy of juvenile transgenic common carp Cyprinus carpio and their size-matched non-transgenic conspecifics were measured under conditions of limited food supply. Transgenic fish exhibited 73 center dot 3% more movements as well as a higher feeding order, and consumed 1 center dot 86 times as many food pellets as their non-transgenic counterparts. After the 10 day experiment, transgenic C. carpio had still not realized their higher growth potential, which may be partly explained by the higher frequency of movements of transgenics and the 'sneaky' feeding strategy used by the non-transgenics. The results indicate that these transgenic fish possess an elevated ability to compete for limited food resources, which could be advantageous after an escape into the wild. It may be that other factors in the natural environment (i.e. predation risk and food distribution), however, would offset this advantage. Thus, these results need to be assessed with caution.
Resumo:
The use of malachite green (MG) in fish farming is prohibited in China due to its potentially toxicological and carcinogenic nature, but it is still illegally used in some places. Uptake, accumulation and deputation of MG in various tissues were studied under laboratory conditions in three common freshwater fish, Parabramis pekinensis (plant-eating fish), Carassius auratus (omnivorous fish) and Ophiocephalus argus (carnivorous fish). The concentrations of MG and its primary metabolite, the reduced and colorless leucomalachite green (LMG), were analyzed by liquid chromatography-mass spectrometry (LC-MS2). Absorption of MG occurred during the waterborne exposure and the MG concentrations in gills of the three fish species all showed a maximum at 0 h after an acute water exposure (6 mg l(-1) MG for 20 min). Afterwards, both MG and LMG declined very rapidly in the blood of the fish. Levels of MG and LMG were still above 0.002 mu g g(-1) in fresh weight muscle at 240 h and may persist for as long as 10 days. Most MG was converted rapidly to LMG in the fish and deputation of LMG was very slow in fat tissue. skin and gonads of the fish. Distribution of LMG was strongly dependent on the fat content in the tissues of the fish, but not related to their different feeding habits. Therefore, it appears that fat tissue, skin and gonads of the fish contaminated by MG and LMG pose the greatest risk for human consumption. (C) 2008 Published by Elsevier B.V.
Resumo:
This Study was conducted in Lake Dongtinghu, a large river-connected lake on the Yangtze River flood-plain, China. Our goal was to determine trophic relationships among benthic macroinvertebrates, as well as the effects of flood disturbance on the benthic food web of a river-connected lake. Macroinvertebrates in the lake fed mainly on detritus and plankton (both zooplankton and phytoplankton). Food web Structure in Lake Dongtinghu was characterized by molluscs as the dominant group, low connectance, high level of omnivory. based oil detritus and primary production, and most ingestion concentrating on a few links. Our analyses showed that flood disturbance is an important factor affecting the benthic food web in Lake Dongtinghu. The numbers of species and functional feeding groups (FFGs), and the density and biomass of macroinvertebrates decreased significantly during flooding. Connectance was higher during the flood season than in other seasons, indicating that floods have a strong effect on connectance in this Yangtze River-connected lake. Flood effects on the benthic web were also evident in the decrease of niche overlaps within and anion, FFGs. Our results provide useful information regarding biodiversity conservation on the Yangtze floodplain. Reconstructing and maintaining natural and regular flow regimes between Yangtze lakes and the river is essential for restoration of macroinvertebrates on the floodplain.
Resumo:
Silver and bighead carps were cultured in large fish pens to reduce the risks of cyanobacterial bloom outbreaks in Meiliang Bay, Lake Tauhu in 2004 and 2005. Diet compositions and growth rates of the carps were studied from April to November each year. Both carp species fed mainly on zooplankton (> 50% in diet) in 2004 when competition was low, but selected more phytoplankton in 2005 when competition was high. Silver carp had a broader diet breadth than did bighead carp. Higher densities and fewer food resources increased diet breadths but decreased the diet overlap in both types of carps. It can be predicted that silver and bighead carps would be released from diet competition and shift to feed mainly on zooplankton at low densities, decreasing the efficiency of controlling cyanobacterial blooms. Conclusively, when silver and bighead carps are used to control cyanobacterial blooms, a sufficiently high stocking density is very important for a successful practice.
Resumo:
Partial cDNA sequences of TCR gamma and CD3 gamma/delta were isolated from the thymus of common carp (Cyprinus carpio L.) by the method of suppression subtractive hybridization (SSH). Subsequently the full length cDNAs of carp TCR gamma and CD3 gamma/delta were obtained by means of 3' RACE and 5' RACE, respectively. The full length of carp TCR gamma chain is 1368 bp and encodes 326 amino acids including a signal peptide region of 19 amino acids and a transmembrane region of 23 amino acids at the C-terminal region from aa 291 to 313. The V region of carp TCR gamma contains 109 amino acids, the core motif FGXG in J segment was also found in carp TCR gamma. The C region of carp TCR gamma contains the characteristic CX6PX6WX45C motif. The CP region of carp TCR C gamma contains 37 amino acids. The full length of carp CD3 gamma/delta is 790 bp and encodes 175 amino acids including a signal peptide region of 17 amino acids and a transmembrane region of 23 amino acids from aa 93 to 115. Similar to other known CD3 gamma/delta s, four cysteine residues in the extracellular domain and an immunoreceptor tyrosine-based activation motif ITAM (YxxL/Ix6-8YxxL/I) in the intracellular domain are also included in carp CD3 gamma/delta. Differing from other known CD3 gamma/delta s, carp CD3 gamma/delta tacks the CXXCXE motif in the extracellular domain. RTPCR analysis demonstrated that the expression of TCR gamma gene was mainly in the thymus and gill of 6-month carp, but in 18-month carp, TCR gamma gene was detected in all the examined tissues. The expression of CD3 gamma/delta gene was detected in all examined tissues of 6 and 18-month carp; among them, the highest expression level was in the thymus of 6-month carp. In situ hybridization showed that CD3 gamma/delta-expressing cells were widely distributed in the head kidney, spleen and kidney of carp, whereas in the thymus, they were densely distributed in the lymphoid outer zone and scattered in the epithelioid inner zone. (c) 2007 Published by Etsevier Ltd.
Resumo:
The present study was conducted in Lake Donghu, a suburban eutrophic lake arising from the middle reaches of the Yangtze River, China. Food composition of 32 taxa of zoobenthos was analyzed from 1251 gut samples. Macroinvertebrate primary consumers ingested mainly detritus, sand grains and diatoms. The predators primarily preyed on rotifers, crustaceans, oligochaetes and chironomid larvae. The dietary overlap was relatively high among collector taxa but low among other macroinvertebrates. Food composition and dietary overlap of macroinvertebrates changed considerably, both spatially and temporally. Food web structure differed between inshore and offshore regions of Lake Donghu. The inshore web was relatively complex and dynamic whereas the offshore web was simple and stable. Taxon-specific changes of diet seem to have little effect on the benthic food web structure in offshore waters of a eutrophic lake.
Resumo:
No detailed food web research on macroinvertebrate community of lacustrine ecosystem was reported in China. The present study is the first attempt on the subject in Lake Biandantang, a macrophytic lake in Hubei Province. Food webs of the macroinvertebrate community were compiled bimonthly from March, 2002 to March, 2003. Dietary information was obtained from gut analysis. Linkage strength was quantified by combining estimates of energy flow (secondary production) with data of gut analysis. The macroinvertebrate community of Lake Biandantang was based heavily on detritus. Quantitative food webs showed the total ingestion ranged from 6930 to 36,340 mg dry mass m(-2) bimonthly. The ingestion of macroinvertebrate community was higher in the months with optimum temperature than that in other periods with higher or lower temperature. Through comparison, many patterns in benthic food web of Lake Biandantang are consistent with other detritus-based webs, such as stream webs, but different greatly from those based on autochthonous primary production (e.g. pelagic systems). It suggests that the trophic basis of the web is essential in shaping food web structure.
Resumo:
The capacity of hybrid tilapia Oreochromis mossambicus x O. niloticus [23.2 +/- 0.2 g (mean +/- SE)] to show compensatory growth was assessed in an 8-week experiment. Fish were deprived of feed for 1, 2 and 4 weeks, and then fed to satiation for 4 weeks; fish fed to satiation during the experiment served as control. Water temperature gradually declined from 28.1 to 25.5 degrees C throughout the experiment. Specific growth rate (SGR) decreased with progressive food deprivation. At the end of deprivation, body weight was lower in the deprived fish than in the control. Fish deprived for 4 weeks exhibited lower contents of lipids and energy in whole body, and higher moisture content and ratio of protein to energy (P/E) than those of the control; they also consumed feed faster than the control when normal feeding was resumed. All deprived fish showed higher food intake (FI) than that of the control during re-alimentation; however, enhanced SGR was only observed in the fish deprived for 4 weeks. There were no significant differences in digestibility of protein and energy, food efficiency (FE) or energy retention efficiency between the control and deprived fish. At the end of re-alimentation, deprived fish failed to catch up in body weight with the control, while content of moisture, lipids and energy, and P/E in whole body of the deprived fish did not significantly differ from that of the control. The results of the experiment revealed that the hybrid tilapia reared in freshwater showed partial capacity for compensatory growth following food deprivation of 4 weeks, and that growth compensation was due mainly to increased FI, rather than to improved FE.
Resumo:
In recent years, much progress has been made in the rearing of fish larvae fed only artificial diets. A preliminary study was made in an attempt to evaluate the effects of live food and formulated diets on survival, growth and body protein content of first-feeding larvae of Plelteobagrus fulvidraco. Three test diets varying in protein level were formulated: Feed 1 containing 45% protein, Feed 2 with 50% protein and Feed 3 with 55% protein. Larvae fed live food (newly hatched Artemia, unenriched) were the control. The experiment started 3 days post-hatch and lasted for 23 days. At the end of the 23-day trial, survival was best in the control group (65.6%) whereby the final body weight and specific growth rate (SGR) were significantly lower than those in the test feed groups. At the same time, coefficients of variation for SGR and final body weight in the test groups were significantly higher than those in the control. Whole body protein content in all treatments showed a similar tendency during development: significantly higher 3 days post-hatch, then decreasing significantly, and then increasing unstatistically 10 days post-hatch. All results suggest that live food is still better for first-feeding larvae of P. fulvidraco, since live food leads to healthier larvae growth.