3 resultados para magnetostriction

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cobalt ferrites with chemical composition Co1+xZnxFe2-2xO4 (r=0.0, 0.1, 0.2, 0.4) were obtained with conventional solid reaction. The ZnO-doped samples have lower lattice constant than CoFe2O4 by adjusting Co ions to the octahedral sites. The results show that doping ZnO could extremely improve the magnetic properties. In comparison with pure CoFe2O4, the little ZnO-doped sample has higher permeability and much lower coercivity at the condition of a little decrease of magnetization saturation. Sample with x=0.1 shows evident magnetostrictive effect at the magnetic field of 30-60 mT while pure cobalt ferrite sample does not, though the saturation magnetostriction decreases. These indicate that ZnO-doping improves the magnetostrictive sensitivity of the cobalt ferrites and have potential applications in magnetoelectric devices and magnetic detector.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The YCo5.0-xMnxGa7.0 compounds crystallize with the ScFe6Ga6-type structure. The lattice of YCo5.0-xMnxGa7.0 expands with the increase of the Mn content for 0.05 <= x <= 2.5, but the lattice of YCo2.0Mn3.0Ga7.0 shrinks compared with YCo2.5Mn2.5Ga7.0. The shrinkage of the lattice is attributed to the magnetostriction of YCo2.0Mn3.0Ga7.0. The substitution of Mn for Co forms magnetic clusters in the antiferromagnetic matrix. The magnetic frustration results in the spin-glass-like behavior for 0.8 <= x <= 1.5 and the difference between zero-field-cooling (ZFC) and field-cooling (FC) magnetizations for x = 2.0, 2.5, and 3.0. A stable long-range magnetic ordering appears among the Mn-centered magnetic clusters with the ordering temperature 110 K for x = 2.0. The hump in the thermomagnetization of YCo3.0Mn2.0Ga7.0 can be attributed to the competitive effects between the thermal fluctuation and the enhanced magnetic interaction. Both the hump and the bifurcation between the ZFC and the FC magnetizations of YCo3.0Mn2.0Ga7.0 occur at lower temperatures as the applied field increases. On the two-step magnetization curve of YCo3.0Mn2.0Ga7.0, the inflection point at 4000 Oe is due to the coercive field, and the magnetic moments in the clusters are tilted to the applied field above 4000 Oe. The magnetic ordering temperature is further increased to 210 K for x = 2.5 and to 282 K for x = 3.0. The spontaneous magnetization of YCo2.0Mn3.0Ga7.0 is 0.575 mu B/f.u. at 5 K with a canted magnetic structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cobalt ferrites with chemical composition Co1+xZnxFe2-2xO4 (r=0.0, 0.1, 0.2, 0.4) were obtained with conventional solid reaction. The ZnO-doped samples have lower lattice constant than CoFe2O4 by adjusting Co ions to the octahedral sites. The results show that doping ZnO could extremely improve the magnetic properties. In comparison with pure CoFe2O4, the little ZnO-doped sample has higher permeability and much lower coercivity at the condition of a little decrease of magnetization saturation. Sample with x=0.1 shows evident magnetostrictive effect at the magnetic field of 30-60 mT while pure cobalt ferrite sample does not, though the saturation magnetostriction decreases. These indicate that ZnO-doping improves the magnetostrictive sensitivity of the cobalt ferrites and have potential applications in magnetoelectric devices and magnetic detector.