5 resultados para magnetisation
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The ultrafast dynamics of in-plane four-state magnetization reversal from compressively strained (Ga,Mn)As film was investigated by magneto-optical Kerr rotation measurement. The magnetization reversal signal was dramatically suppressed upon pumping, and recovered slowly with time evolution. The low switching field H-c1 increased abruptly from 30 to 108 G on the first several picoseconds and recovered back to the value before optical pumping within about 500 ps, whereas the high switching field H-c2 did not change obviously upon pumping, implying a domain-wall nucleation/propagation at low fields and coherent magnetization rotation at high fields in the magnetization reversal process.
Resumo:
The magnetic anisotropy in ytterbium iron garnet (YbIG) is theoretically investigated under high magnetic fields (up to 160 kOe). According to the crystal field effect in ytterbium gallium garnet (YbGaG), a detailed discussion of crystal-field interaction in YbIG is presented where a suitable set of crystal-field parameters is obtained. Meanwhile, the influences of nine crystal-field parameters on the crystal-field energy splitting are analyzed. On the other hand, considering the ytterbium-iron (Yb-Fe) superexchange interaction of YbIG, the spontaneous magnetization is calculated at different temperatures for the [111] direction. In particular, we demonstrate that the Wesis constant lambda is the function of 1/T in YbIG. In addition, the field dependences of the magnetization for the [110] and [111] directions are theoretically described where a noticeable anisotropy can be found. Our theory further confirms the great contribution of anisotropic Yb-Fe superexchange interaction to the anisotropy of the magnetization in YbIG. Moreover, our theoretical results are compared with the available experiments.
Resumo:
Fe films with the different thicknesses were grown on c(4x4) reconstructed GaAs (001) surfaces at low temperature by molecular-beam epitaxy. Well-ordered bcc structural Fe epitaxial films are confirmed by x-ray diffraction patterns and high-resolution cross-sectional transmission electron microscopy images. A large lattice expansion perpendicular to the surface in Fe film is observed. In-plane uniaxial magnetic anisotropy is determined by the difference between magnetizing energy along [110] and [110] directions, and the constant of interfacial uniaxial magnetic anisotropy is calculated to be 1.02x10(-4) J m(-2). We also find that magnetic anisotropy is not obviously influenced after in situ annealing, but in-plane strain is completely changed.
Resumo:
We have fabricated a set of samples of zincblende Mn-rich Mn(Ga)As clusters embedded in GaAs matrices by annealing (Ga,Mn)As films with different nominal Mn content at 650 degrees C. For the samples with Mn content no more than 4.5%, the Curie temperature reaches nearly 360 K. However, when Mn content is higher than 5.4%, the samples exhibit a spin-glass-like behavior. We suggest that these different magnetic properties are caused by the competing result of dipolar and Ruderman-Kittel-Kasuya-Yosida interaction among clusters. The low-temperature spin dynamic behavior, especially the relaxation effect, shows the extreme creeping effect which is reflected by the time constant tau of similar to 10(11) s at 10 K. We explain this phenomenon by the hierarchical model based on the mean-field approach. We also explain the memory effect by the relationship between the correlation function and the susceptibility.
Resumo:
The magnetisation of heavy holes in III-V semiconductor quantum wells with Rashba spin-orbit coupling (SOC) in an external perpendicular magnetic field is studied theoretically. We concentrate on the effects on the magnetisation induced by the system boundary, the Rashba SOC and the temperature. It is found that the sawtooth-like de Haas-van Alphen (dHvA) oscillations of the magnetisation will change dramatically in the presence of such three factors. Especially, the effects of the edge states and Rashba SOC on the magnetisation are more evident when the magnetic field is smaller. The oscillation center will shift when the boundary effect is considered and the Rashba SOC will bring beating patterns to the dHvA oscillations. These effects on the dHvA oscillations are preferably observed at low temperatures. With increasing temperature, the dHvA oscillations turn to be blurred and eventually disappear.