104 resultados para lower crust
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Mid-ocean ridge basalts (MORBs) from East Pacific Rise (EPR) 13 degrees N are analysed for major and trace elements, both of which show a continuous evolving trend. Positive MgO-Al2O3 and negative MgO-Sc relationships manifest the cotectic crystallization of plagioclase and olivine, which exist with the presence of plagioclase and olivine phenocrysts and the absence of clinopyroxene phenocrysts. However, the fractionation of clinopyroxene is proven by the positive correlation of MgO and CaO. Thus, MORB samples are believed to show a "clinopyroxene paradox". The highest magnesium-bearing MORB sample E13-3B (MgO = 9.52%) is modelled for isobaric crystallization with COMAGMAT at different pressures. Observed CaO/Al2O3 ratios can be derived from E13-3B only by fractional crystallization at pressure > 4 +/- 1 kbar, which necessitates clinopyroxene crystallization and is not consistent with cotectic crystallization of olivine plus plagioclase in the magma chamber (at pressure similar to 1 kbar). The initial compositions of the melt inclusions, which could represent potential parental magmas, are reconstructed by correcting for post-entrapment crystallization (PEC). The simulated crystallization of initial melt inclusions also produce observed CaO/Al2O3 ratios only at > 4 +/- 1 kbar, in which clinopyroxene takes part in crystallization. It is suggested that MORB magmas have experienced clinopyroxene fractionation in the lower crust, in and below the Moho transition zone. The MORB magmas have experienced transition from clinopyroxene+plagioclase+olivine crystallization at > 4 +/- 1 kbar to mainly olivine+plagioclase crystallization at < 1 kbar, which contributes to the explanation of the "clinopyroxene paradox".
Resumo:
The onshore-offshore deep seismic experiment was carried out for the first time and filled the blankness of the seismic surveys in the transition area between South China and northeastern South China Sea. The seismic data were analyzed and processed. The different seismic phases were identified and their travel time arrivals were modeled by ray-tracing to study the P-wave velocity crustal structure of this area. The crustal structure of this area is the continental crust. The crust thickness is gradually decreasing southward along the on-shore-offshore seismic line. The low-velocity layer (5.5 similar to 5.9 km (.) s(-1)) exists generally in the middle crust (about 10.0 similar to 18.0km)with about 2.5 similar to 4.0 km thickness, which is also thinning seaward. No obvious high-velocity layer appears in the lower crust. The Binhai (littoral) fault zone is a low velocity zone, which is located about 35km southeast to the Nan'ao station and corresponding to the gradient belt of gravity & magnetism anomalies. The depth of the fault zone is close to the Moho discontinuity. The littoral fault zone is a boundary between the normal continental crust of South China and the thinned continental crust of the sea area.
Resumo:
The occurrence of Late Cretaceous mafic dykes and their entrained peridotite and granulite xenoliths as well as clinopyroxene xenocrysts in the Qingdao region provide us a precious opportunity to unveil the nature and characteristics of the Late Mesozoic lithospheric mantle and lower crust beneath the Jiaodong region, and the change of the magma sources. These studies are of important and significant for understanding the lithospheric evolution in the eastern North China Craton. There were two periods of magma activities in Late Mesozoic in Qingdao Laoshan region, one was around 107Ma in the Early Cretaceous and the other around 86Ma in the Late Cretaceous according to the whole rock K-Ar age determination. The Early Cretaceous mafic dykes and the Late Cretaceous mafic dyke (i.e. Pishikou mafic dike) have completely different geochemical characteristics. The Early Cretaceous mafic dykes are enriched in LILE, strongly depleted in HFSE (Nb, Ta, Zr, Hf) and characterized by the highly radiogenic Sr and Nd isotopic compositions. These geochemical features indicate that the Early Cretaceous mafic dykes were derived from an enriched lithospheric mantle. In contrast, the Late Cretaceous mafic dyke is enriched in LILE, without HFSE depletion (Nb, Ta, Zr, Hf) and has less radiogenic Nd and Sr isotopic compositions. These geochemical features indicate that the Late Cretaceous mafic dyke was derived from the asthenosphere modified by subducted pelagic sediment contamination. The intrusive age of the Late Cretaceous mafic dyke provides further information for the termination of the lithosphere thinning for the eastern North China Crtaon. Pishikou Late Cretaceous mafic dyke contains abundant peridotitic xenoliths, granulite xenoliths and clinopyroxene xenocrysts. The peridotitic xenoliths can be divided into two types: high Mg# peridotites and low Mg# peridotites, according to their textural and mineral features. The high-Mg# peridotites have high Fo (up to 92.2) olivines and high Cr# (up to 55) spinels. The clinopyroxenes in the high# peridotites are rich in Cr2O3 and poor in Al2O3. The low-Mg# peridotites are typified by low Mg# (Fo <90) in olivines and low Cr# (Cr# <0.14) in spinels. The clinopyroxenes in the low-Mg# peridotites are rich in Al2O3 and Na2O and poor in Cr2O3. These two type peridotites have similar equilibrated temperatures of 950C-1100C. The Clinopyroxenes in the high-Mg# peridotites generally have high and variable REE contents (REE = 5.6-84 ppm) and LREE-enriched chondrite-normalized patterns ((La/Yb)N>1). In contrast, the clinopyroxenes in the low-Mg# peridotites have low REE contents (REE = 12 ppm) and LREE-depleted patterns ((La/Yb)N<1). The textural, mineral and elemental features of the low-Mg# peridotites are similar to those of the low-Mg peridotites from the Junan, representing the newly-accreted lithospheric mantle. However, the mineralogical and petrological features of the high-Mg# peridotites are similar to those of the high-Mg# peridotites from the Junan region, representing samples from the old refractory lithospheric mantle that was strongly and multiply affected by melts of different origins Late Cretaceous mafic dike in the Qingdao region also contains two types of granulite xenoliths according to the mineral constituents: the pyroxene-rich granulites and the plagioclase-rich granulites. Equilibrated temperatures calculated from the cpx-opx geothermometers are in a range of 861C - 910C for the pyroxene-rich granulites and of 847C - 890C for the plagioclase-rich granulites. The equilibrated pressure for the plagioclase-rich granulites is in a range of 9.9-11.7 kbar. Combined with the results of the peridotitic xenoliths, a 40C temperature gap exists between the peridotite and the granulite. The petrological Moho was 33~36 km at depths, broadly consistent with the seismic Moho estimated from the geophysical data. This indicates that there was no obvious crust-mantle transition zone in the Qingdao region in the Late Mesozoic. Pishikou Late Cretaceous mafic dyke entrained lots of clinopyroxene xenocrysts which are characterized by the chemical zoning. According to the zoning features, two types of clinopyroxene xenoliths can be classified, the normal zoning and the revise zoning. The normally-zoned clinopyroxene xenocrysts have LREE-depleted REE patterns in the cores. In contrast, the revisely-zoned clinopyroxenes have LREE-enriched REE patterns in the cores. According to the rim and core compositions of xenocrysts, all the rims are balanced with the host magma. Meanwhile, the origins of the cores were complicated, in which the normally-zoned clinopyroxenes were derived form the lithospheric mantle and some of the reversely-zoned clinopyroxnes were originated from the lower crust. Other revisely-zoned clinopyroxenes had experienced complex geological evolution and need to be further investigated. According to the above results, a simplified lithospheric profile has been established beneath the Qingdao region and a constraint on the nature and characteristics of the lithospheric mantle and lower crust has been made.
Resumo:
The Qinghai-Tibet Plateau lies in the place of the continent-continent collision between Indian and Eurasian plates. Because of their interaction the shallow and deep structures are very complicated. The force system forming the tectonic patterns and driving tectonic movements is effected together by the deep part of the lithosphere and the asthenosphere. It is important to study the 3-D velocity structures, the spheres and layers structures, material properties and states of the lithosphere and the asthenosphere for getting knowledge of their formation and evolution, dynamic process, layers coupling and exchange of material and energy. Based on the Rayleigh wave dispersion theory, we study the 3-D velocity structures, the depths of interfaces and thicknesses of different layers, including the crust, the lithosphere and the asthenosphere, the lithosphere-asthenosphere system in the Qinghai-Tibet Plateau and its adjacent areas. The following tasks include: (1)The digital seismic records of 221 seismic events have been collected, whose magnitudes are larger than 5.0 over the Qinghai-Tibet Plateau and its adjacent areas. These records come from 31 digital seismic stations of GSN , CDSN、NCDSN and part of Indian stations. After making instrument response calibration and filtering, group velocities of fundamental mode of Rayleigh waves are measured using the frequency-time analysis (FTAN) to get the observed dispersions. Furthermore, we strike cluster average for those similar ray paths. Finally, 819 dispersion curves (8-150s) are ready for dispersion inversion. (2)From these dispersion curves, pure dispersion data in 2°×2° cells of the areas (18°N-42°N, 70°E-106°E) are calculated by using function expansion method, proposed by Yanovskaya. The average initial model has been constructed by taking account of global AK135 model along with geodetic, geological, geophysical, receiving function and wide-angle reflection data. Then, initial S-wave velocity structures of the crust and upper mantle in the research areas have been obtained by using linear inversion (SVD) method. (3)Taking the results of the linear inversion as the initial model, we simultaneously invert the S wave velocities and thicknesses by using non-linear inversion (improved Simulated Annealing algorithm). Moreover, during the temperature dropping the variable-scale models are used. Comparing with the linear results, the spheres and layers by the non-linear inversion can be recognized better from the velocity value and offset. (4)The Moho discontinuity and top interface of the asthenosphere are recognized from the velocity value and offset of the layers. The thicknesses of the crust, lithosphere and asthenosphere are gained. These thicknesses are helpful to studying the structural differentia between the Qinghai-Tibet Plateau and its adjacent areas and among geologic units of the plateau. The results of the inversion will provide deep geophysical evidences for studying deep dynamical mechanism and exploring metal mineral resource and oil and gas resources. The following conclusions are reached by the distributions of the S wave velocities and thicknesses of the crust, lithosphere and asthenosphere, combining with previous researches. (1)The crust is very thick in the Qinghai-Tibet Plateau, varying from 60 km to 80 km. The lithospheric thickness in the Qinghai-Tibet Plateau is thinner (130-160 km) than its adjacent areas. Its asthenosphere is relatively thicker, varies from 150 km to 230 km, and the thickest area lies in the western Qiangtang. India located in south of Main Boundary thrust has a thinner crust (32-38 km), a thicker lithosphere of about 190 km and a rather thin asthenosphere of only 60 km. Sichuan and Tarim basins have the crust thickness less than 50km. Their lithospheres are thicker than the Qinghai-Tibet Plateau, and their asthenospheres are thinner. (2)The S-wave velocity variation pattern in the lithosphere-asthenosphere system has band-belted distribution along east-westward. These variations correlate with geology structures sketched by sutures and major faults. These sutures include Main Boundary thrust (MBT), Yarlung-Zangbo River suture (YZS), Bangong Lake-Nujiang suture (BNS), Jinshajiang suture (JSJS), Kunlun edge suture (KL). In the velocity maps of the upper and middle crust, these sutures can be sketched. In velocity maps of 250-300 km depth, MBT, BNS and JSJS can be sketched. In maps of the crustal thickness, the lithospheric thickness and the asthenospheric thickness, these sutures can be still sketched. In particular, MBT can be obviously resolved in these velocity maps and thickness maps. (3)Since the collision between India and Eurasian plate, the “loss” of surface material arising from crustal shortening is caused not only by crustal thickening but also by lateral extrusion material. The source of lateral extrusion lies in the Qiangtang block. These materials extrude along the JSJS and BNS with both rotation and dispersion in Daguaiwan. Finally, it extends toward southeast direction. (4)There is the crust-mantle transition zone of no distinct velocity jump in the lithosphere beneath the Qiangtang Terrane. It has thinner lithosphere and developed thicker asthenosphere. It implies that the crust-mantle transition zone of partial melting is connected with the developed asthenosphere. The underplating of asthenosphere may thin the lithosphere. This buoyancy might be the main mechanism and deep dynamics of the uplift of the Qinghai-Tibet hinterland. At the same time, the transport of hot material with low velocity intrudes into the upper mantle and the lower crust along cracks and faults forming the crust-mantle transition zone.
Resumo:
As the most spectacular and youngest case of continental collision on the Earth, to investigate the crust and mantle of Tibetan plateau, and then to reveal its characters of structure and deformation, are most important to understand its deformation mechanism and deep process. A great number of surface wave data were initially collected from events occurred between 1980 and 2002, which were recorded by 13 broadband digital stations in Eurasia and India. Up to 1,525 source-station Rayleigh waveforms and 1,464 Love wave trains were analysed to obtain group velocity dispersions, accompanying with the detail and quantitative assessment of the fitness of the classic Ray Theory, errors from focal and measurements. Assuming the model region covered by a mesh of 2ox2o-sized grid-cells, we have used the damped least-squares approach and the SVD to carry out tomographic inversion, SV- and SH-wave velocity images of the crust and upper mantle beneath the Tibetan Plateau and surroundings are obtained, and then the radial anisotropy is computed from the Love-Rayleigh discrepancy. The main results demonstrate that follows, a) The Moho beneath the Tibetan Plateau presents an undulating shape that lies between 65 and 74 km, and a clear correlation between the elevations of the plateau and the Moho topography suggests that at least a great part of the highly raised plateau is isostatically compensated. b) The lithospheric root presents a depth that can be substantiated at ~140 km (Qiangtang Block) and exceptionally at ~180 km (Lhasa Block), and exhibits laterally varying fast velocity between 4.6 and 4.7 km/s, even ~4.8 km/s under northern Lhasa Block and Qiangtang Block, which may be correlated with the presence of a shield-like upper mantle beneath the Tibetan Plateau and therefore looked as one of the geophysical tests confirming the underthrusting of India, whose leading edge might have exceeded the Bangong-Nujiang Suture, even the Jinsha Suture. c) The asthenosphere is depicted by a low velocity channel at depths between 140 and 220 km with negative velocity gradient and velocities as low as 4.2 km/s; d) Areas in which transverse radial anisotropy is in excess of ~4% and 6% on the average anisotropy are found in the crust and upper mantle underlying most of the Plateau, and up to 8% in some places. The strength, spatial configuration and sign of radial anisotropy seem to indicate the existence of a regime of horizontal compressive forces in the frame of the convergent orogen at the same time that laterally varying lithospheric rheology and a differential movement as regards the compressive driving forces. e) Slow-velocity anomalies of 12% or more in southern Tibet and the eastern edge of the Plateau support the idea of a mechanically weak middle-to-lower crust and the existence of crustal flow in Tibet.
Resumo:
The Central Asian Orogen Belt (CAOB), which is different from the subductional orogen and the collisional orogen, is known as the most important site of crustal growth in the Phanerozoic, and it has been a ‘hot spot’ for studying the orogenic belts. The Chinese West Tianshan Orogen is occupying the west-southern part of the CAOB and is of great importances to understand the orogenic processes and the continental growth in the Central Asia. The West Tianshan Orogen had undergone complex tectonic evolutional processes in Paleozoic times and large volumes granitic rocks have recorded important information about these processes. Litter is known about Phanerozoic continental growth in the Western Tianshan area so far, compared with the other areas of the CAOB, such as eastern Junggar, western Junggar, Altai and Alakol. The aim of this dissertation is to set up the chronology frame of granitoids in western Tianshan, provide new evidence for the tectonic evolution and discuss the Paleozoic continental growth in this area, on the basis of the studies on the isotopic chronology, major element, trace element and Nd-Sr isotopic geochemistry of granitoids and the isotopic chronology and geochemistry of the ophiolites in this area, especially the Kule Lake ophiolites. 25 precise SHRIMP U-Pb zircon and LA-ICPMS U-Pb zircon ages have been obtained in this dissertation. The granitic rocks in western Tianshan had been formed during two periods: the granitic gneiss with an age of 896Ma, possibly representing the forming age of the Precambrian basement; the granitic rocks with ages varying from 479Ma to 247Ma, recording the Paleozoic orogenic process of western Tianshan. The granitoids in western Tianshan are composed of intermediate-basic rocks, intermediate rocks, intermediate-acid rocks and acid rocks, mainly intermediate-acid rocks and acid rocks. They are mostly granite, granodiorite, quartz syenite and monzodiorite. Different types of granitic rocks are exposed in different tectonic units. The granitoids on the northern margin of the Yili Plate mainly formed in late Paleozoic (413Ma ~ 281Ma), those with ages varying from 413Ma to 297Ma show continental arc affinities and the magnesian calc-alkalic metaluminous diorite of 281Ma display the geochemical characteristics similar to those of granites formed during the post-orogenic period. The granitiods on the southern margin of the Yili Plate include the adakite diorite of 470Ma which was formd by partial melting of thickened lower crust, the post-collisional alkali-feldspar granite of 430Ma, the volcanic arc granite of 348Ma and the Triassic post-collisional granite. The granitoids in the Central Tianshan Plate formed in 479Ma ~ 247Ma, mainly in 433Ma ~ 321Ma. The granitic rocks with ages of 479Ma ~ 321Ma are magnesian calc-alkalic to alkalic rocks with continental arc affinities. A few post-collisional granitoids of 276Ma ~ 247Ma may have inherited the geochemical characteristics of pre-existing arc magma. The granitic rocks in Southern Tianshan (northern margin of the Tarim plate) formed two stages, 420Ma ~ 411Ma and ca. 285Ma. The magnesian calcic to alkalic granites of 420Ma ~ 411Ma may formed during the extension process of the continental margin. The granite of 285Ma includes mostly ferroan calc-alkalic to alkali-calcic rocks with high SiO2 and high alkaline contents, and obviously negative anomaly of Eu, Ba, Sr, P, Ti, similar to the geochemical characteristics of the A-type granite which is formed during post-collisional extension. The Kule Lake ophiolite in southern Tianshan shows the affinity of N-MORB. A SHRIMP zircon U-Pb age of 425±8Ma has obtained for gabbros. Some zircons have given another group of 206Pb/238U age 918Ma, which may indicate the information of the pre-exist old basement rock. The small oceanic basin represented by Kule Lake ophiolite probably developed on the split northern margin of Tarim block. A model for Paleozoic tectonic evolution of the West Tianshan Orogen has been proposed here on the basis of the new results obtained in this dissertation and the previous published data. In Early Cambrian, the Terskey Ocean occurred along the North Nalati fault (NNF), and it separated the Yili plate from the Central Tianshan plate which was probably connected with the Tarim plate. The Terskey Ocean probably subducted towards south under the Central Tianshan plate and towards north under the Yili plate simultaneously. In the early stage of Late Ordovician, the Terskey Ocean had been closed, and the Yili and Central Tianshan plates collided. Meanwhile, extension happened within the joint Central Tianshan and Tarim plates gradually and the Paleo-South Tianshan Ocean had been formed. In Early Silurian, the Paleo-South Tianshan Ocean began to subduct beneath the composite Yili-Central Tianshan plate, which was intruded by volcanic arc granitoids. In Middle Silurian, the Paleo-South Tianshan Ocean, which had reached a certain width, was subducting strongly. And this subduction may have produced voluminous granitoids in the Central Tianshan plate. In the latest stage of Carboniferous, the Paleo-South Tianshan ocean closed, and the Yili-Central Tianshan plate and Tarim plate collided. In Late Cambrian, Paleo-Junggar Ocean occurred to north of the Yili plate; and started to subduct towards south under the Yili plate in Ordovician. This subduction may have produced a magma arc on the northern margin of the Yili plate. In Late Carboniferous, the Paleo-Junggar Ocean had been closed. The Yili-Central and Junggar plates amalgamated together. The West Tianhan Orogen may undergo a post-collisional collapse since Permian. And the magmatic activities may continue to early Triassic. The initial 87Sr/86Sr ration of the granitic rocks in the western Tianshan Mountains varies from 0.703226 to 0.716343, and Nd(t)from -6.50 to 2.03. The characteristics of Sr-Nd isotope indicate that the source of granitic material is not a sole source, which may be produced by mantle-crust magma mixing. In Paleozoic time, lateral growth of the continental crust along active continental margins was dominant, whereas the vertical growth of continental crust resulted from post- collisional mantle derived magmas was not obvious.
Resumo:
The Tien Shan is the most prominent intracontinental mountain belt on the earth. The active crustal deformation and earthquake activities provide an excellent place to study the continental geodynamics of intracontinental mountain belt. The studies of deep structures in crust and upper mantle are significantly meaningful for understanding the geological evolution and geodynamics of global intracontinental mountain belts. This dissertation focuses on the deep structures and geodynamics in the crust and upper mantle in the Tien Shan mountain belt. With the arrival time data from permanent and temporal seismic stations located in the western and central Tien Shan, using seismic travel time tomographic method, we inversed the P-wave velocity and Vp/Vs structures in the crust and uppermost mantle, the Pn and Sn velocities and Pn anisotropic structures in the uppermost mantle, and the P-wave velocity structures in the crust and mantle deep to 690km depth beneath the Tien Shan. The tomographic results suggest that the deep structures and geodynamics have significant impacts not only on the deformations and earthquake activities in the crust, but also on the mountain building, collision, and dynamics of the whole Tien Shan mountain belt. With the strongly collision and deformations in the crust, the 3-D P-wave velocity and Vp/Vs ratio structures are highly complex. The Pn and Sn velocities in the uppermost mantle beneath the Tien Shan, specially beneath the central Tien Shan, are significantly lower than the seismic wavespeed beneath geological stable regions. We infer that the hot upper mantle from the small-scale convection could elevate the temperature in the lower crust and uppermost mantle, and partially melt the materials in the lower crust. The observations of low P-wave and S-wave velocities, high Vp/Vs ratios near the Moho and the absences of earthquake activities in the lower crust are consistent with this inference. Based on teleseismic tomography images of the upper mantle beneath the Tien Shan, we infer that the lithosphere beneath the Tarim basin has subducted under the Tien Shan to depths as great as 500 km. The lithosphere beneath the Kazakh shield may have subducted to similar depths in the opposite direction, but the limited resolution of this data set makes this inference less certain. These images support the plate boundary model of converge for the Tien Shan, as the lithospheres to the north and south of the range both appear to behave as plates.
Resumo:
Late Mesozoic-Cenozoic volcanic rocks are well exposed in Lhasa Terrane, southern Tibet. This research attempts to apply 40Ar/39Ar geochronology, major, trace element and Sr-Nd-O isotopic geochemistry data to constrain the spatio-temporal variations, the composition of source, geodynamic setting. The results indicate that Lhasa Terrane mainly went through three tectonic-magmatic cycle: (1) Phase of Oceanic subduction (140-80Ma). Along with the subducting beneath the Eurasian Plate of Neo-Tethys slab, the oceanic sediment and/or the subducting slab released fluids/melts to metasomatize the subcontinental lithospheric mantle, and induced the mantle wedge partially melt and produced the calc-alkaline continental arc volcanic rocks; (2) Phase of continental-continental collision. Following the subducting of the Neo-Tethys slab, the Indian Plate collided with the Eurasian Plate dragged by the dense Neo-Tethys oceanic lithosphere. The oceanic lithosphere detached from continental lithosphere during roll-back and break-off and the asthenosphere upwelled. The resulting conducted thermal perturbation leads to the melting of the overriding mantle lithosphere and produced the syn-collisional magmatism: the Linzizong Formation and dykes; (3) Following by the detachment of the Tethys oceanic lithosphere, the Indian Lithosphere subducted northward by the drive from the expanding of Indian Ocean. The dense Indian continental lithospheric mantle (±the thickened lower crust) break off, disturb the asthenosphere, and lead to the melting of the overriding mantle lithosphere, which has been metasomatized by the melts/fluids from the subducting oceanic/continental lithosphere and the asthenosphere, and produced the rift-related ultrapotassic rocks.
Resumo:
Eastern Himalayan Syntaxis (EHS) and its surroundings (eastern margin of Tibet) is one of the most complicated tectonic areas in the world. As the exhaust opening of the balanced materials of the Tibetan Plateau during the collision of Indan and Eurasian plates, the deep structure beneath EHS surrounding region is referred to as the key to the study of the dynamics of the plateau. EHS3D project, sponsored by NSFC, has been proposed to explore the deep electric features of the area. During the first stage of EHS3D(2006-2008), MT+LMT measurements have been conducted along two lines from Chayu to Qingshuihe (EHS3D-3) and Chayu to Ruoergai (EHS3D-2). This paper will discuss the MT models of EHS3D-3 line. By the data procrssing, including distortion analysis, Robust estimation and strike decomposition, rotated apparent resitivities and phases have been obtained for each station. Then conventional 2-D inversion algorithms (NLCG and RRI) were employed to produce 2-D models. The final preferred 2-D model suggests that the upper crust consists of resistive blocks while in mid-lower crust there are two extensive conductive bodies beneath Lhasa block and Qiangtang terrain respectively. Jinshajiang suture is a gradient belt and Bangong-Nujiang suture appear a conductive belt dipping to the north. . We concluded that the formation of the two conductive bodies attributed to the partial melt and fluids in the lower crust. The regional electric strike derived from decomposition analysis indicates that the crust and upper mantle move in different manners. The upper crust moves like slips of rigid blocks along major slip faults while the lower crust creeps as a flow in the conductive channels.
Resumo:
Bayan Obo REE-Nb-Fe ore deposit is the largest REE deposit in the world. Owing to its unique type and tremendous economic value, this deposit has widely attracted interests from geological researchers and vast amount of scientific data have been accumulated. However, its genesis, especially ore-forming age and REE sources, have been under dispute for a long time. On the basis of previous research works, this paper mainly conducts studies on the Early Paleozoic ore-forming event in the Bayan Obo deposit. The following results and conclusions can be suggested: Sm-Nd isotopic analytical results of bastnaesite, beloeilite, albite and fluorite samples from a coarse-crystalline ore lode present an isochron age of 436±35Ma. Besides, Rb-Sr isotope dating of the coarse-crystalline biotite lode that intruded into banded ores gives an isochron age of 459±39Ma. The two ages verify the exist of Early Paleozoic ore-forming event at Bayan Obo, which characterized by extensive netted mineralization of REE fluorocarbonates, aeschynite and monazite, accompanied by widely fluorite-riebeckite-aegirine-apatite alteration. Sr-Nd isotope composition of vein minerals is located between EMI and ancient lower crust component in the ISr(t)-εNd(t) correlation diagram, indicating that there is a crustal contamination during veined mineralization. A large area late Paleozoic granitoids are distributed in the southeast region of east open pit of the mine. The granitoids intruded directly into the ore-bearing dolomite, and produced intense skarnization. Moreover, at 650-660m of the drill core on 22 line and 1598m level flat in the south of East Open Pit, we firstly found skarnization rocks. Single grain and low background Rb-Sr isochrone dating on phlogopite in skarn gives 309±12Ma. Considering the intruded contacting relationship, the late Paleozoic granitoids, already extended to the under part of REE ore bodies, must be posterior to the latest intense REE mineralization, and is only a destructive tectonic and magmatic activity. Fluid inclusion types of fluorite in the Bayan Obo deposit consist of multiphase daughter mineral-bearing inclusion, two or three phase CO2-bearing inclusion and two phase aqueous inclusion. Petrography, laser Raman analysis and microthermometry study indicate that the fluids involving in REE-Nb-Fe mineralization at Bayan Obo might be mainly of H2O-CO2-NaCl-(F-REE) system. The presence of REE-carbonate as a daughter mineral in fluid inclusions shows that the original ore-forming fluids are rich in REE elements.
Resumo:
In this paper, the Xiaodonggou porphyry molybdenum deposit located in the Xarmoron molybdenum metallogenic belt is chose as the research area. We have analyzed the petrology of the Xiaodonggou pluton in detail and made chemical analysis of the major and trace elements, Rb-Sr and Sm-Nd isotope, common lead isotope and SHRIMP zircon U-Pb dating et al; in the other hand, we use the molybdenite to make common lead analysis and Re-Os isotopic dating. The Xiaodonggou pluton is rich in silicon, potass, zirconium, and low in REE. In addition, it has no minus Eu abnormity and show a isotopic composition high in εNd(t) and low in Sri, indicating its magma origining from the melting of juvenile thicken lower crust. In the meanwhile, it contained the features of high temperature, quick melting, quick segregation and quick emplacement. The common lead analysis of the pluton orthoclase and molybdenite show that the former transfer from orogen to mantle and the latter come from mantle, which is consistent to the molybdenite sulfur isotopic and quartz oxygen isotopic composition, demonstrating that the rock and ore-forming materials of deposit having different sources, magma from the lower crust mixing with mantle fluid. In plus, we use the physical experiments results of the water-magma reaction to explain the interaction of magma and mantle fluid. In the deep crust, these two systems uplifted in a immiscible state; when they reached low depth, the stream film between fluid-magma collapsed, and the magma was broken into small agglomerates by the fluid, then they mixed thoroughly. The SHRIMP zircon U-Pb dating gave a result of 142±2Ma and the molybdenite Re-Os dating result is 138.1±2.8Ma, corresponding to the big tectonic transition period of 140Ma, when the major stress field changing from south and north to west and east. At this time, the Da Hinggan ling ranges area was under an extensive background, underplating proceeded and mantle materials could add into the magmas forming in the lower crust. So, from the above analysis, we propose the following model for the Xiaodonggou porphyry molybdenum deposit: in the early Cretaceous period, the Da Hinggan ling ranges area was under a extensive background, the adding of mantle fluid containing ore materials into heated lower crust made it melting to produce magmas. Following more mantle fluid got into the magma room and urged the magma to segregate from the source quickly. The fluid and magma uplifted together, when they arrived at shallow depth, the fluid-magma became unstable and the latter was broken into many small agglomerates with fluid connecting them in the interspaces. Because of the H+, K+ and various elements existing in the fluid, it would reacted with the magma and the rock through alteration and ore minerals crystallized out, forming the Xiaodonggou porphyry deposit with disseminated mineralization phenomenon.
Resumo:
The central-south Tibet is a part of the products of the continental plate collision between Eurasia and India. To study the deep structure of the study area is significant for understanding the dynamics of the continental-continental collision. A 3-D density model matched well with the observations in the central-south Tibet was proposed in this study. In addition, this study has also used numerical simulation method to prove that Quasi-Love (QL) wave is deduced by anisotropy variation but not by lateral heterogeneity. Meanwhile, anisotropy variation in the upper mantle of the Qiangtang terrane and Lhasa terrane is detected by the QL waves observed in recorded seismograms. Based on the gravity modeling, some results are summarized as follows: 1) Under the constrain of geometrical structure detected by seismic data, a 3-D density model and Moho interface are proposed by gravity inversion of the central-south Tibet. 2) The fact that the lower crustal densities are smaller than 3.2 g/cm3, suggests absence of eclogite or partial eclogitization due to delamination under the central-south Tibet. 3) Seismicity will be strong or weak in the most negative Bouguer gravity anomaly. So there is no a certain relationship between seismicity and Bouguer gravity anomaly. 4) Crustal composition are determined after temperature-pressure calibration of seismic P wave velocity. The composition of lower crust might be one or a mixture of: 1. amphibolite and greenschist facies basalt beneath the Qiangtang terrane; 2. gabbro-norite-troctolite and mafic granulite beneath the Lhasa terrane. Because the composition of the middle crust cannot be well constrained by the above data set, the data set published by Rudnick & Fountain (1995) is used for comparison. It indicated the composition of the middle crust is granulite facies and might be pelitic gneisses.Granulite facies used to be interpreted as residues of partial melting, which coincidences with the previous study on partial melting middle crust. Amphibolite facies are thought to be produced after delamination, when underplating works in the rebound of the lower crust and lithospheric mantle. From the seismology study, I have made several followed conclusions: 1) Through the numerical simulation experiment of surface wave propagating in heterogeneity media, we can find that amplitude and polarization of surface wave only change a little when considering heterogeneity. Furthermore, it is proved that QL waves, generated by surface wave scattering, are caused by lateral variation of anisotropy but not by heterogeneity. 2) QL waves are utilized to determine the variation of uppermost mantle anisotropy of the Tibetan plateau. QL waves are identified from the seismograms of the selected paths recorded by the CAD station. The location of azimuth anisotropy gradient is estimated from the group velocities of Rayleigh wave, Love wave and QL wave. It suggests that south-north lateral variation of azimuthal anisotropy locates in Tanggula mountain, and east-west lateral variation in the north of Gandese mountain with 85°E longitude and near the Jinsha river fault with 85°E longitude.
Resumo:
Duobuza copper deposit, newly discovered typical gold-rich porphyry copper deposit with superlarge potential, is located in the Tiegelong Mesozoic tectonic -magmatic arc of the southern edge of Qiangtang block and the northern margin of Bangonghu-Nujiang suture. Quartz diorite porphyrite and grandiorite porphyry, occurred in stock, are the main ore-bearing porphyries. As the emplacement of porphyry stock, a wide range of hydrothermal alteration has developed. Within the framework of the ore district, abundant hydrothermal magnetite developed, and the relationship between precipitation of copper and gold and hydrothermal magnetite seems much close. Correspondingly, a series of veinlets and network veinlets occurred in all alteration zones. Therefore, systematic research on such a superlarge high-grade Duobuza gold-rich porphyry copper deposit can fully revealed the metallogenic characteristics of gold-rich porphyry copper deposits in this region, establish metallogenetic model and prospecting criteria, and has important practical significance on the promotion of regional exploration. In addition, this research on it can enrich metallogenic theory of strong oxidation magma-fluid to gold-rich porphyry copper deposit, and will be helpful to understand the metallogenic characteristics in early of subduction of Gangdese arc stages and its entire evolution history of the Qinghai-Tibet Plateau, the temporal and spatial distribution of ore deposits and their geodynamics settings. Northern ore body of Duobuza copper deposit have been controlled with width (north-south) about 100 ~ 400 m, length (east-west) about 1400 m, dip of 200 °, angle of dip 65 °~ 80 °. And controlled resource amount is of 2.7 million tons Cu with grade 0.94% and 13 tons Au with 0.21g/tAu. Overall features of ore body are large scale, higher grade copper, gold-rich. Ore occurred in the body of granodiotite porphyry and quartz diorite porphyrite and its contact zone with wall rock. Through the detailed mapping and field work studies, some typies of alteration are identificated as follows: albitization, biotititation, sericitization, silication, epidotization, chloritization, carbonatization, illitization, kaolinization and so on. The range of alteration is more than 10km2. Wall alteration zone can be divided into potassic alteration, moderate argillization alteration, argillization, illite-hydromuscovite or propylitization from ore-bearing porphyry center outwards, but phyllic alteration has not well developed and only sericite-quartz veins occurred in local area. Moreover, micro-fracture is development in ore district , and correspondingly a series of veinlets are development as follows: biotite vein (EB type), K-feldspar-biotite-chalcopyrite-quartz vein, magnetite-antinolite-K-feldspar vein, quartz-chalcopyrite-magnetite veins (A-type), quartz-magnetite-biotite-K-feldspar vein, chalcopyrite veinlets in potassic alteration zone; (2) chalcopyrite occurring in the center vein–quartz vein (B type), chalcopyrite veinlets, chalcopyrite-gypsum vein in intermediate argillization alteration; (3) chalcopyrite- pyrite-quartz vein, pyrite-quartz vein, chalcopyrite-gypsum veins, quartz-gypsum- molybdenite-chalcopyrite vein in argillization alteration; (4) gypsum veins, quartz-(molybdenite)-chalcopyrite vein, quartz-pyrite vein, gypsum- chalcopyrite vein, potassium feldspar veinlets, Carbonate veins, quartz-magnetite veins in the wall rock. In short, various veins are very abundant within the framework of the ore district. The results of electronic probe microscopy analysis (EMPA) indicate that Albite (Ab 91.5~99.7%) occurred along the rim of plagioclase phenocryst and fracture, and respresents the earliest stages of alteration. K-feldspar (Or 75.1~96.9%) altered plagioclase phenocryst and matrix or formed secondary potassium feldspar veinlets. Secondary biotite occurred mainly in phenocryst, matrix and veinlets, belong to magnesium-rich biotite formed under the conditions of high-oxidation magma- hydrothermal. Chloritization developed in all alteration zones and alterd iron- magnesium minerals such as biotite and hornblende and then formed chlorite veinlets. As the temperature rises, Si in the tetrahedral site of chlorite decreased, and chlorite component evolved from diabantite to ripiolite. The consistent 280℃~360℃ of formation temperature hinted that chlorite formed on the same temperature range in all alteration zones. However, formation temperature range of chlorite from the gypsum-carbonate-chlorite vein was 190℃~220℃, and it may be the product of the latest stage of hydrothermal activity. The closely relationship between biotite and rutile indicate that most of rutiles are precipitated in the process of biotite alteration and recrystallization. In addition, the V2O3 concentration of rutile from ore body in Duobuza gold-rich porphyry copper deposit is >0.4%, indicate that V concentration in rutile has important significance on marking main ore body of porphyry copper deposit. Apatites from Duobuza deposit all are F-rich. And apatite in the wall rock contained low MnO content and relatively high FeO content, which may due to the basaltic composition of the wall rocks. The MnO in apatite from altered porphyry show a strong positive correlation with FeO. In addition, Cl/F ratio of apatite from wall rock was highest, followed by the potassic alteration zone and potassic alteration zone overprinted by moderate argillization alteration was the lowest. SO2 in Apatite are in the scope of 0 to 0.66%, biotite in the apatite has the highest SO2, followed by the potassic alteration zone, potassic alteration zone overprinted by moderate argillization alteration, and the lowest in the surrounding rocks, which may be caused by the decrease of oxygen fugacity of hydrothermal fluid and S exhaust by sulfide precipitation in potassic alteration. Magnetite in the wall rock have higher Cr2O3 and lower Al2O3 features compared with altered porphyry, this may be due to basalt wall rock generally has high Cr content. And magnetites have higher TiO2 content in potassic alteration than moderate argillization alteration overprinted by potassic alteration, argillization and wall rock, suggested that its formation temperature in potassic alteration was the highest among them. The ore minerals mainly are chalcopyrite and bornite, and Au contents of chalcopyrite, bornite, and pyrite are similar with chalcopyrite slightly higher. The Eu* negative anomaly of disseminated chalcopyrite was relatively lower than chalcopyrite in veinlets. Within a drill hole, the Eu* negative anomaly of disseminated chalcopyrite was gradually larger from bottom to top. Magnetite has the same distribution model, with obvious negative Eu* abnormal, and ΣREE in great changes. The gypsum has the highest ΣREE content and the obvious negative anomaly, and biotite obviously has the Eu* abnormal. Based on the petrographic and geochemical characteristics, five series of magmatic rocks can be broadly classified; they are volcanic rocks of the normal island arc, high-Nb basaltic rocks, adakites, altered porphyry and diorite. The Sr, Nd, Hf isotopes and geochemistry of various series of magmatic rock show that they may be the result of mixing between basic magma and various degrees of acid magma coming from lower crust melted by high temperature basic underplating from partial melting of the subduction sediment melt metasomatic mantle wedge. Furthermore S isotope and Pb isotope of the sulfide, ore-bearing porphyries and volcanic rocks indicated ore-forming source is the mantle wedge metasomatied by subduction sediment melt. Oxygen fugacity of magma estimated by Fe2O3/FeO of whole rock and zircon Ce4+/Ce3+ indicated that the oxidation of basalt-andesitic rocks is higher than ore-forming porphyry, and might imply high-oxidation characteristics of underplated basic magma. Its high oxidative mechanism is likely mantle sources metasomatied by subduction sediment magma, including water and Fe3+. And such high oxidation of basaltic magma is conducive to the mantle of sulfides in the effective access to melt. And the An component of dark part within plagioclase phenocryst zoning belong to bytownite (An 74%), and its may be a result of magma composition changes refreshment by basaltic magma injection. SHRIMP zircon U-Pb and LA-ICP-MS zircon U-Pb geochronology study showed that the intrusions and volcanic rocks from Duobuza porphyry copper deposit belong to early Cretaceous magma series (126~105Ma). The magma evolution series are as follows: the earliest diorite and diorite porphyrite → ore-bearing porphyry and barren grandiorite porphyry →basaltic andesite → diorite porphyrite → andesite → basaltic andesite, and magma component shows a evolution trend from intermediate to intermediate-acid to basic. Based on the field evidences, the formation age of high-Nb basalt may be the latest. The Ar-Ar geochronology of altered secondary biotite, K-feldspar and sericite shows that the main mineralization lasting a interval of about 4 Ma, the duration limit of whole magma-hydrothermal evolution of about 6 Ma, and possibly such a long duration limit may result in the formation of Duobuza super-large copper deposit. Moreover, tectonic diagram and trace element geochemistry of volcanic rocks and diorite from Duobuza porphyry copper deposit confirm that it formed in a continental margin arc environment. Zircon U-Pb age of volcanic rocks and porphyry fall in the range of 105~121Ma, and Duobuza porphyry copper deposit locating in the north of the Bangonghu- Nujiang suture zone, suggested that Neo-Tethys ocean still subducted northward at least early Cretaceous, and its closure time should be later than 105 Ma. Three major inclusion types and ten subtypes are distinguished from quartz phenocrysts and various quartz veins. Vapor generally coexisting with brine inclusions, suggest that fluid boiling may be the main ore-forming mechanism. Raman spectrums of fluid inclusions display that the content of vapor and liquid inclusion mainly contain water, and vapor occasionally contain a little CO2. In addition, the component of liquid inclusions mainly include Cl-, SO42-, Na+, K+, a small amount of Ca2+, F-; and Cl- and Na+ show good correlation. Vapor mainly contains water, a small amount of CO2, CH4 and C2H6 and so on. The daughter minerals identified by Laman spectroscopy and SEM include gypsum, chalcopyrite, halite, sylvite, rutile, potassium feldspar, Fe-Mn-chloride and other minerals, and ore-forming fluid belong to a complex hydrothermal system containing H2O-NaCl-KClFeCl2CaCl2. H and O isotopic analysis of quartz phenocryst, vein quartz, magnetite, chlorite and gypsum from all alteration zones show that the ore-forming fluid of Duobuza gold-rich porphyry copper deposit consisted mainly of magmatic water, without addition of meteric water. Duobuza gold-rich porphyry copper deposit formed by the primary magmatic fluid (600-950C), which has high oxidation, ultra-high salinity and metallogenic element-rich, exsolution direct from the magma, and it is representative of the typical orthomagmatic end member of the porphyry continuum. Moreover, the fluid evolution model of Duobuza gold-rich porphyry copper deposit has been established. Furthermore, two key factors for formation of large Au-rich porphyry copper deposit have been summed up, which are ore-forming fluids earlier separated from magma and high oxidation magma-mineralization fluid system.
Resumo:
The South China Sea (SCS) is one of the largest marginal seas in the western Pacific, which is located at the junction of Eurasian plate, Pacific plate and Indian-Australian plate. It was formed by continent breakup and sea-floor spreading in Cenozoic. The complicated interaction among the three major plates made tectonic movement complex and geological phenomena very rich in this area. The SCS is an ideal place to study the formation and evolution of rifted continental margin and sea-floor spreading since it is old enough to have experienced the major stages of the basin evolution but still young enough to have preserved its original nature. As the demand for energy grows day by day in our country, the deep water region of the northern continental margin in the SCS has become a focus of oil and gas exploration because of its huge hydrocarbon potential. Therefore, to study the rifted continental margin of the SCS not only can improve our understanding of the formation and evolution processes of rifted continental margin, but also can provide theoretical support for hydrocarbon exploration in rifted continental margin. This dissertation mainly includes five topics as follows: (1) Various classic lithosphere stretching models are reviewed, and the continuous non-uniform stretching model is modified to make it suitable for the case where the extension of lithopheric mantle exceeds that of the crust. Then simple/pure shear flexural cantilever model is applied to model the basement geometries of SO49-18 profile in the northern continental margin of the SCS. By fitting the basements obtained by using 2DMove software with modeling results, it is found that the reasonable effective elastic thickness is less than 5km in this region. According to this result, it is assumed that there is weak lower crust in the northern continental margin in the SCS. (2) We research on the methods for stretching factor estimation based on various lithosphere stretching models, and apply the method based on multiple finite rifting model to estimate the stretching factors of several wells and profiles in the northern continental margin of the SCS. (3) We improve one-dimension strain rate inversion method with conjugate gradient method, and apply it to invert the strain rate of several wells in the northern continental margin of the SCS. Two-dimension strain rate forward modeling is carried out, and the modeling results show that effective elastic thickness is a key parameter to control basin’s geometry. (4) We simulate divergent upwelling mantle flow model using finite difference method, and apply this newly developed model to examine the formation mechanism of the northwest and central sub-basin in the SCS. (5) We inverse plate thickness and basal temperature of oceanic lithosphere using sea-floor ages and bathymetries of the North Pacific and the North Atlantic based on varied-parameters plate model, in which the heat conductivity, heat capacity and coefficient of thermal expansion depend on temperature or depth. A new empirical formula is put forward based the inversed parameters, which depicts the relation among sea-floor age, bathymetry and heat flow. Then various similar empirical formulae, including the newly developed one, are applied to examine the sea-floor spread issue in the SCS based on the heat flow and bathymetry data of the abyssal sub-basin.