109 resultados para lotus embryo
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
被子植物成熟的种子一般不合有叶绿素,但是莲(Nelumbo nucifera Gaertn.)的胚芽却具有鲜明的绿色,本文较详细地研究了莲胚芽不同于一般被子植物叶组织的色素和光台系统组成,并通过对莲胚芽成熟发育过程中的叶绿素合成和光合系统发育进行分析,探讨了莲胚芽光合特性形成的原因,最后对莲胚芽在黑暗中萌发能发育并建成光合系统的现象进行了研究,主要的结果如下: 1,莲胚芽不仅含有叶绿素和光合系统,而且其色素和光台系统组成均与莲叶以及其它被子植物的叶组织不同。莲胚芽的Chla/b值约为0.8左右,远远低于正常高等植物的Chla/b值(~3):莲胚芽的色素组成中不含有β-胡萝卜素;莲胚芽的光合系统没有电子传递活性,快速荧光动力学测定结果表明莲胚芽只有较高的固定荧光F。没有可变荧光Fv;原位低温荧光光谱检测表明莲胚芽只在679nm处有一个荧光发射主峰,没有正常的PSII和PSI荧光发射峰(683nm、692nm和730nm);部分变性的叶绿素蛋白复合物凝胶电泳分析结果表明莲胚芽叶绿体类囊体膜上只存在LHCII 一种叶绿素蛋白复合物(其中单体和二聚体形式的LHCII均有发现);Western Blots检测结果表明莲胚芽的LHCII组成比较单一,同时确证了莲胚芽不含有PSI的核心和天线蛋白组分。莲胚芽LHCII和莲叶LHCII在SDS-PAGE图谱上迁移距离相同,但是光谱分析表明二者不仅在Chla、Chlb的相对含量上不同,而且在叶绿素分子与蛋白的结合状态上也存在差异,这些差异主要是由一部分Chla分子造成的,Chlb分子在二者中的结合状态则比较~致。 2,对莲胚芽成熟过程中的光合系统发育进行研究,结果表明这个过程可以分为建成期(0-20天)、稳定期(20-30天)和降解期(30—40天)三个阶段。在建成期和稳定期内,莲胚芽外面的包被物可能不是完全遮光的,所以莲胚芽能感受到环境光信号,其叶绿素合成已经光合系统建成集中在此阶段内进行:在莲’胚芽成熟后期,莲胚芽外面的包被组织开始木质化,光信号无法再穿透它们,莲胚芽的光合系统发育进入降解期,叶绿素合成停止,己建成的光合系统开始降解,到莲胚芽成熟时,除LHCIl外,光合系统其余的叶绿素蛋白复合物都被降解了,所以莲胚芽具有不同于一般祓子植物叶组织的色素和光合系统组成。对莲胚芽的成熟发育过程进行遮光处理,结果发现遮光发育的莲胚芽发生明显黄化,这表明莲胚芽的叶绿素合成也离不开光照,在莲总基因组中检测不到编码DPOR的三个基因的同源序列,确证了莲胚芽不具有在黑暗中合成叶绿素的能力。 3,在黑暗中萌发生长的莲胚芽能够在相当长的时间内保持其叶绿素稳定,特别是Chla的含量在暗生长10天以内基本没有变化;原位低温荧光光谱检测表明暗萌发过程中莲苗有PSII和PSI的荧光发射峰形成,暗生长10天左右的莲苗具有比较明显的光合系统荧光发射峰,但是与自然光照下的发育过程相比,暗萌发莲苗的光合系统荧光发射峰出现较慢,而且PSI的荧光发射相对较弱;暗萌发莲苗在转绿以及冻融过程中的原位低温荧光光谱变化表明莲苗在黑暗中建成的光合系统不完善并且不稳定;对莲胚芽、暗萌发莲苗以及莲叶的叶绿体吸收光谱进行比较,结果显示暗萌发莲苗的叶绿体发育阶段介于莲胚芽和莲叶之间;叶绿素蛋白复合物凝胶电泳分离,SDS-PAGE,Western Blots免疫检测、以及叶绿素荧光诱导动力学结果均确证暗萌发莲苗有光合系统的发育,特别是PSI的出现;对暗萌发莲苗的光化学活性进行分析,结果表明暗中建成的PSII和PSI均具有电子传递活性:但是放氧复合物的发育不完全,对莲胚芽暗萌发过程光合系统建成的原因进行分析,推测叶绿素可能起了至关重要的作用,光对于莲胚芽萌发过程中的光合系统发育来说可能并不是必需的。
Resumo:
The nucleation of microdamage under dynamic loading was investigated through planar impact experiments accomplished with a light gas gun. The microscopic observation of recovered and sectioned specimens showed that microcracks were nucleated only by cracking of brittle particles inside material. However, for comparison the in situ static tensile tests on the same material conducted with a scanning electron microscope showed that the microcracks were nucleated by many forms those were fracture of ductile matrix, debonding particles from matrix and cracking of brittle particles. The quantitative metallographic observations of the specimens subjected to impact loading showed that most of the cracked particles were situated on grain boundaries of the aluminium matrix. These facts suggested the concept of critical size and incubation time of submicroscopic cavities in the dynamic case and the mechanism of embryo-damage induced nucleation by fracture of brittle particles in the aluminium alloy under impact loading was proposed.
Resumo:
Electrowetting on dielectrics has been widely used to manipulate and control microliter or nanoliter liquids in micro-total-analysis systems and laboratory on a chip. We carried out experiments on electrowetting on a lotus leaf, which is quite different from the equipotential plate used in conventional electrowetting. This has not been reported in the past. The lotus leaf is superhydrophobic and a weak conductor, so the droplet can be easily actuated on it through electrical potential gradient. The capillary motion of the droplet was recorded by a high-speed camera. The droplet moved toward the counterelectrode to fulfill the actuation. The actuation speed could be of the order of 10 mm/s. The actuation time is of the order of 10 ms.
Resumo:
Electrowetting on dielectrics has been widely used to manipulate and control microliter or nanoliter liquids in micro-total-analysis systems and laboratory on a chip. We carried out experiments on electrowetting on a lotus leaf which is quite different from the equipotential plate used in conventional electrowetting. This has not been reported in the past. The lotus leaf is superhydrophobic and a weak conductor so the droplet can be easily actuated on it through electrical potential gradient. The capillary motion of the droplet was recorded by a high-speed camera. The droplet moved toward the counterelectrode to fulfill the actuation. The actuation speed could be of the order of 10 mm/s. The actuation time is of the order of 10 ms.