16 resultados para local pseudo-character number

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Direct numerical simulation (DNS) of supercritical CO2 turbulent channel flow has been performed to investigate the heat transfer mechanism of supercritical fluid. In the present DNS, full compressible Navier-Stokes equations and Peng-Robison state equation are solved. Due to effects of the mean density variation in the wall normal direction, mean velocity in the cooling region becomes high compared with that in the heating region. The mean width between high-and low-speed streaks near the wall decreases in the cooling region, which means that turbulence in the cooling region is enhanced and lots of fine scale eddies are created due to the local high Reynolds number effects. From the turbulent kinetic energy budget, it is found that compressibility effects related with pressure fluctuation and dilatation of velocity fluctuation can be ignored even for supercritical condition. However, the effect of density fluctuation on turbulent kinetic energy cannot be ignored. In the cooling region, low kinematic viscosity and high thermal conductivity in the low speed streaks modify fine scale structure and turbulent transport of temperature, which results in high Nusselt number in the cooling condition of the supercritical CO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Direct numerical simulation (DNS) of supercritical CO2 turbulent channel flow has been performed to investigate the heat transfer mechanism of supercritical fluid. In the present DNS, full compressible Navier-Stokes equations and Peng-Robison state equation are solved. Due to effects of the mean density variation in the wall normal direction, mean velocity in the cooling region becomes high compared with that in the heating region. The mean width between high-and low-speed streaks near the wall decreases in the cooling region, which means that turbulence in the cooling region is enhanced and lots of fine scale eddies are created due to the local high Reynolds number effects. From the turbulent kinetic energy budget, it is found that compressibility effects related with pressure fluctuation and dilatation of velocity fluctuation can be ignored even for supercritical condition. However, the effect of density fluctuation on turbulent kinetic energy cannot be ignored. In the cooling region, low kinematic viscosity and high thermal conductivity in the low speed streaks modify fine scale structure and turbulent transport of temperature, which results in high Nusselt number in the cooling condition of the supercritical CO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We focus on the relationship between the linearization method and linear complexity and show that the linearization method is another effective technique for calculating linear complexity. We analyze its effectiveness by comparing with the logic circuit method. We compare the relevant conditions and necessary computational cost with those of the Berlekamp-Massey algorithm and the Games-Chan algorithm. The significant property of a linearization method is that it needs no output sequence from a pseudo-random number generator (PRNG) because it calculates linear complexity using the algebraic expression of its algorithm. When a PRNG has n [bit] stages (registers or internal states), the necessary computational cost is smaller than O(2n). On the other hand, the Berlekamp-Massey algorithm needs O(N2) where N ( 2n) denotes period. Since existing methods calculate using the output sequence, an initial value of PRNG influences a resultant value of linear complexity. Therefore, a linear complexity is generally given as an estimate value. On the other hand, a linearization method calculates from an algorithm of PRNG, it can determine the lower bound of linear complexity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of dispersed short-fatigue-cracks is analysed based on the equilibrium of crack-number-density (CND). By separating the mean value and the stochastic fluctuation of local CND, the equilibrium equation of overall CND is derived. Comparing with the mean-field equilibrium equation, the equilibrium equation of overall CND has different forms in the expression of crack-nucleation-rate or crack-growth-rate. The simulation results are compared with experimental measurements showing the stochastic analyses provide consistent tendency with experiments. The discrepancy in simulation results between overall CND and mean-field CND is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Examined in this work is the anti-plane stress and strain near a crack in a material that softens beyond the elastic peak and unloads on a linear path through the initial state. The discontinuity in the constitutive relation is carried into the analysis such that one portion of the local solution is elliptic in character and the other hyperbolic. Material elements in one region may cross over to another as the loading is increased. Local unloading can thus prevail. Presented are the inhomogeneous character of the asymptotic stress and strain in the elliptic and hyperbolic region, in addition to the region in which the material elements had experienced unloading. No one single stress or strain coefficient would be adequate for describing crack instability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high Reynolds number flow contains a wide range of length and time scales, and the flow domain can be divided into several sub-domains with different characteristic scales. In some sub-domains, the viscosity dissipation scale can only be considered in a certain direction; in some sub-domains, the viscosity dissipation scales need to be considered in all directions; in some sub-domains, the viscosity dissipation scales are unnecessary to be considered at all. For laminar boundary layer region, the characteristic length scales in the streamwise and normal directions are L and L Re-1/ 2 , respectively. The characteristic length scale and the velocity scale in the outer region of the boundary layer are L and U, respectively. In the neighborhood region of the separated point, the length scale l<numbers RDxi between different cells in Navier-Stokes (NS) equations computations for high Reynolds number flows, an idea of solving the conservation equations for discrete cells was proposed and named the discrete fluid dynamics (DFD) algorithm. Analysis shows that the basic conservative equations for discrete cells are the Euler equations, NS- and diffusion parabolized (DP) NS equations. In this paper, a new multiscale-domain decomposition method is developed for the high Reynolds number flow. First, the whole domain is decomposed to different sub-domains with the different characteristic scales. Then the different dominant equation of all sub-domains is defined according to the diffusion parabolized (DP) theory of viscous flow. Finally these different equations are solved simultaneously in whole computational region. For numerical tests of high Reynolds numerical flows, two-dimensional supersonic flows over rearward and frontward steps as well as an interaction flow between shock wave and boundary layer were solved numerically. The pressure distributions and local coefficients of skin friction on the wall are given. The numerical results obtained by the multiscale-domain decomposition algorithm are well agreement with those by NS equations. Comparing with the usual method of solving the Navier-Stokes equations in the whole flow, under the same numerical accuracy, the present multiscale domain decomposition method decreases CPU consuming about 20% and reflects the physical mechanism of practical flow more accurately.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By solving numerically the full Maxwell-Bloch equations without the slowly varying envelope approximation and the rotating-wave approximation, we investigate the effects of Lorentz local field correction (LFC) on the propagation properties of few-cycle laser pulse in a dense A-type three-level atomic medium. We find that: when the area of the input pulse is larger, split of pulse occurs and the number of the sub-pulses with LFC is larger than that without LFC; at the same distance, the time interval between the first sub-pulse and the second sub-pulse in the case without LFC is longer than that with LFC, the time of pulse appearing in the case without LFC is later than that in the case with LFC, and the two phenomena are more obvious with propagation distance increasing; time evolution rules of the populations of levels vertical bar 1 >, vertical bar 2 > and vertical bar 3 > in the two cases with and without LFC are much different. When the area of the input pulse is smaller, effects of LFC on time evolutions of the pulse and populations are remarkably smaller than those in the case of larger area pulse. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our study of a novel technique for adaptive image sequence coding is reported. The number of reference frames and the intervals between them are adjusted to improve the temporal compensability of the input video. The bits are distributed more efficiently on different frame types according to temporal and spatial complexity of the image scene. Experimental results show that this dynamic group-of-picture (GOP) structure coding scheme is not only feasible but also better than the conventional fixed GOP method in terms of perceptual quality and SNR. (C) 1996 Society of Photo-Optical Instrumentation Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We provide a general, necessary, and sufficient condition for the possibility of transforming a mixed bipartite Gaussian state with arbitrarily many modes to another one under arbitrary local Gaussian channels, which do not include classical communication. Moreover, by means of this condition we present a necessary criterion that can be used to check the possibility of a state transformation between two mixed Gaussian states. At the same time, we prove that our criterion can be reduced to the Eisert-Plenio criterion when the mode number is chosen as 1 per side.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent infrared spectroscpic observations of local vibrational mode absorptions have revealed a number of photosensitive centers in semi-insulating GaAs. They include (OVAs) center which has three modes at 730 cm(-1) (A), 715 cm(-1) (B), and 714 cm(-1) (C), respectively, a suggested NH center related to a line at 983 cm(-1) (X(1)), and centers related to hydrogen, such as (H-O) or (H-N) bonds, corresponding to a group of peaks in the region of 2900-3500 cm(-1). The photosensitivity of various local vibration centers was observed to have similar time dependence under near-infrared illumination and was suggested to be due to their charge-state interconversion. Mainly described in this work is the effect of the 1.25-eV illumination. It is confirmed that this photoinduced kinetic process results from both electron capture and hole capture, which are closely related to the photoionization behavior and metastability of the EL2 center.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effects of deposition layer position and number/density on local bending of a thin film are systematically investigated. Because the deposition layer interacts with the thin film at the interface and there is an offset between the thin film neutral surface and the interface, the deposition layer generates not only axial stress but also bending moment. The bending moment induces an instant out-of-plane deflection of the thin film, which may or may not cause the so-called local bending. The deposition layer is modeled as a local stressor, whose location and density are demonstrated to be vital to the occurrence of local bending. The thin film rests on a viscous layer, which is governed by the Navier-Stokes equation and behaves like an elastic foundation to exert transverse forces on the thin film. The unknown feature of the axial constraint force makes the governing equation highly nonlinear even for the small deflection case. The constraint force and film transverse deflection are solved iteratively through the governing equation and the displacement constraint equation of immovable edges. This research shows that in some special cases, the deposition density increase does not necessarily reduce the local bending. By comparing the thin film deflections of different deposition numbers and positions, we also present the guideline of strengthening or suppressing the local bending.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coordination numbers for the samarium atoms and the Sm-O bond distances in SrB4O7:Sm and SrB6O10:Sm prepared in air were determined by means of Sm-L-3 edge EXAFS. The coordination. was found to be nine-folded for both these hosts and the bond distance was 2.40-2.42 Angstrom in SrB4O7:Sm and 2.42-2.44 Angstrom in SrB6O10:Sm. For SrB4O7:Sm the coordination number is coincident with that of the strontium. atoms suggesting the substitution of the samarium atoms at the strontium sites. The coordination number of the strontium atoms in SrB6O10 was also suggested to be nine assuming the same type of substitution. The valences of samarium were determined from the luminescent spectra. Both divalent and trivalent ions were present in both SrB4O7:Sm and SrB6O10:Sm, while the fraction of Sm2+ was higher in the former than in the latter. This difference has been assigned to the difference in rigidity between the B-O networks in these structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based upon analyses of grain-size, rare earth element (REE) compositions, elemental occurrence phases of REE, and U-series isotopic dating, the sediment characteristics and material sources of the study area were examined for the recently formed deep-sea clays in the eastern Philippine Sea. The analytical results are summarized as follows. (1) Low accumulation rate, poor sorting and roundness, and high contents of grains coarser than fine silt indicate relatively low sediment input, with localized material source without long distance transport. (2) The REE Contents are relatively high. Shale-normalized patterns of REE indicate weak enrichment in heavy REE (HREE), Ce-passive anomaly, and Eu-positive anomaly. (3) Elemental occurrence phases of REE between the sediments with and without crust are similar. REE mainly concentrate in residual phase and then in ferromanganese oxide phase. The light REE (LREE) enrichment, Ce-positive anomaly, and Eu-positive anomaly occur in residual phase. Ferromanganese oxide phase shows the characteristics of relatively high HREE content and Ce-passive anomaly. (4) There are differences in each above mentioned aspect between the sediments with and without ferromanganese crust. (5) Synthesizing the above characteristics and source discriminant analysis, the study sediments are deduced to mainly result from the alteration of local and nearby volcanic materials. Continental materials transported by wind and/or river (ocean) flows also have minor contributions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the second-order random wave solutions of water wave equations in finite water depth, statistical distributions of the depth- integrated local horizontal momentum components are derived by use of the characteristic function expansion method. The parameters involved in the distributions can be all determined by the water depth and the wave-number spectrum of ocean waves. As an illustrative example, a fully developed wind-generated sea is considered and the parameters are calculated for typical wind speeds and water depths by means of the Donelan and Pierson spectrum. The effects of nonlinearity and water depth on the distributions are also investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seismic Numerical Modeling is one of bases of the Exploratory Seismology and Academic Seismology, also is a research field in great demand. Essence of seismic numerical modeling is to assume that structure and parameters of the underground media model are known, simulate the wave-field and calculate the numerical seismic record that should be observed. Seismic numerical modeling is not only a means to know the seismic wave-field in complex inhomogeneous media, but also a test to the application effect by all kinds of methods. There are many seismic numerical modeling methods, each method has its own merits and drawbacks. During the forward modeling, the computation precision and the efficiency are two pivotal questions to evaluate the validity and superiority of the method. The target of my dissertation is to find a new method to possibly improve the computation precision and efficiency, and apply the new forward method to modeling the wave-field in the complex inhomogeneous media. Convolutional Forsyte polynomial differentiator (CFPD) approach developed in this dissertation is robust and efficient, it shares some of the advantages of the high precision of generalized orthogonal polynomial and the high speed of the short operator finite-difference. By adjusting the operator length and optimizing the operator coefficient, the method can involve whole and local information of the wave-field. One of main tasks of the dissertation is to develop a creative, generalized and high precision method. The author introduce convolutional Forsyte polynomial differentiator to calculate the spatial derivative of seismic wave equation, and apply the time staggered grid finite-difference which can better meet the high precision of the convolutional differentiator to substitute the conventional finite-difference to calculate the time derivative of seismic wave equation, then creating a new forward method to modeling the wave-field in complex inhomogeneous media. Comparing with Fourier pseudo-spectral method, Chebyshev pseudo-spectral method, staggered- grid finite difference method and finite element method, convolutional Forsyte polynomial differentiator (CFPD) method has many advantages: 1. Comparing with Fourier pseudo-spectral method. Fourier pseudo-spectral method (FPS) is a local operator, its results have Gibbs effects when the media parameters change, then arose great errors. Therefore, Fourier pseudo-spectral method can not deal with special complex and random heterogeneous media. But convolutional Forsyte polynomial differentiator method can cover global and local information. So for complex inhomogeneous media, CFPD is more efficient. 2. Comparing with staggered-grid high-order finite-difference method, CFPD takes less dots than FD at single wave length, and the number does not increase with the widening of the studying area. 3. Comparing with Chebyshev pseudo-spectral method (CPS). The calculation region of Chebyshev pseudo-spectral method is fixed in , under the condition of unchangeable precision, the augmentation of calculation is unacceptable. Thus Chebyshev pseudo-spectral method is inapplicable to large area. CFPD method is more applicable to large area. 4. Comparing with finite element method (FE), CFPD can use lager grids. The other task of this dissertation is to study 2.5 dimension (2.5D) seismic wave-field. The author reviews the development and present situation of 2.5D problem, expatiates the essentiality of studying the 2.5D problem, apply CFPD method to simulate the seismic wave-field in 2.5D inhomogeneous media. The results indicate that 2.5D numerical modeling is efficient to simulate one of the sections of 3D media, 2.5D calculation is much less time-consuming than 3D calculation, and the wave dispersion of 2.5D modeling is obviously less than that of 3D modeling. Question on applying time staggered-grid convolutional differentiator based on CFPD to modeling 2.5D complex inhomogeneous media was not studied by any geophysicists before, it is a fire-new creation absolutely. The theory and practices prove that the new method can efficiently model the seismic wave-field in complex media. Proposing and developing this new method can provide more choices to study the seismic wave-field modeling, seismic wave migration, seismic inversion, and seismic wave imaging.