123 resultados para liquid flow monitoring

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental studies have been performed for horizontal two-phase air-water flows at normal and reduced gravity conditions in a square cross-section channel. The experiments at reduced gravity are conducted on board the Russian IL-76 reduced gravity airplane. Four flow patterns, namely bubble, slug, slug-annular transition and annular flows, are observed depending on the liquid and gas superficial velocities at both conditions. Semi-theoretical Weber number model is developed to include the shape influence on the slug-annular transition. It is shown that its prediction is in reasonable agreement with the experimental slug-annular transition under both conditions. For the case of two-phase gas-liquid flow with large value of the Froude number, the drift-flux model can predict well the observed boundary between bubble and slug flows.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The measurement of void fraction is of importance to the oil industry and chemical industry. In this article, the principle and mathematical method of determining the void fraction of horizontal gas-liquid flow by using a single-energy gamma-ray system is described. The gamma-ray source is the radioactive isotope of Am-241 with gamma-ray energy of 59.5 keV. The time-averaged value of the void fraction in a 50.0-mm i.d. transparent horizontal pipeline is measured under various combinations of the liquid flow and gas flow. It is found that increasing the gas flow rate at a fixed liquid flow rate would increase the void fraction. Test data are compared with the predictions of the correlations and a good agreement is found. The result shows that the designed gamma-ray system can be used for measuring the void fraction in a horizontal gas-liquid two-phase flow with high accuracy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new model is developed for predicting the transition from the slug to annular flow of adiabatic two-phase gas/liquid flow in microgravity (mu g) environment. This model is based on the analyses of the effects of the surface tension and the gas inertia in a sense of more physical approach. The drift-flux model is applied to determine the gas void fraction near the transition region. The new model is compared with previous models and experimental data, and the results show the improvement in explanation of the experimental results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The oil/water two-phase flow inside T-junctions was numerically simulated with a 3-D two-fluid model, and the turbulence was described using the mixture k - epsilon model. Some experiments of oil/water flow inside a single T-junction were conducted in the laboratory. The results show that the separating performance of T-junction largely depends oil the inlet volumetric fraction and flow patterns. A reasonable agreement is reached between the numerical simulation and the experiments for both the oil fraction distribution and the separation efficiency.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work, the drag reduction by gas injection for power-law fluid flow in stratified and slug flow regimes has been studied. Experimentswere conducted to measure the pressure gradient within air/CMC solutions in a horizontal Plexiglas pipe that had a diameter of 50mm and a length of 30 m. The drag reduction ratio in stratified flow regime was predicted using the two-fluid model. The results showed that the drag reduction should occur over the large range of the liquid holdup when the flow behaviour index remained at the low value. Furthermore, for turbulent gas-laminar liquid stratified flow, the drag reduction by gas injection for Newtonian fluid was more effective than that for shear-shinning fluid, when the dimensionless liquid height remained in the area of high value. The pressure gradient model for a gas/Newtonian liquid slug flow was extended to liquids possessing the Ostwald–de Waele power law model. The proposed model was validated against 340 experimental data point over a wide range of operating conditions, fluid characteristics and pipe diameters. The dimensionless pressure drop predicted was well inside the 20% deviation region for most of the experimental data. These results substantiated the general validity of the model presented for gas/non-Newtonian two-phase slug flows.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The behavior of micro-scale flow is significant for the performance of Micro-Electro-Mechanical- Systems (MEMS) devices. Some experiments about liquid flow through microtubes with diameters about 3similar to20mum are presented here. The liquids used in our experiments include some simple liquids with small molecules, such as non-ion water and several kinds of organic liquids (CCL4, C6H5C2H5 and Isopropanol etc.). The flow rate and the normalized friction cocfficients were measured in micro-flow experimental apparatus. The results show that when the driven pressure varies from 0 to 1Mpa, the flow behaviors in 20mum microtube for both polar and non-polar liquids are in agreement with Hagen-Poiseuille law of the classical theory. It means that N-S equation based on continuous medium still acts well in this case. For higher pressure drop from 1 to 30Mpa, in the microtubes with diameter of 3similar to10mum, the normalized friction coefficients of organic liquids can't keep constant with pressure increases. However the non-ion water reveals different trends.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A computational simulation is conducted to investigate the influence of Rayleigh-Taylor instability on liquid propellant reorientation flow dynamics for the tank of CZ-3A launch vehicle series fuel tanks in a low-gravity environment. The volume-of-fluid (VOF) method is used to simulate the free surface flow of gas-liquid. The process of the liquid propellant reorientation started from initially flat and curved interfaces are numerically studied. These two different initial conditions of the gas-liquid interface result in two modes of liquid flow. It is found that the Rayleigh-Taylor instability can be reduced evidently at the initial gas-liquid interface with a high curve during the process of liquid reorientation in a low-gravity environment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Transient flow patterns and bubble slug lengths were investigated with oxygen gas (O-2) bubbles produced by catalytic chemical reactions using a high speed camera bonded with a microscope. The microreactor consists of an inlet liquid plenum, nine parallel rectangular microchannels followed by a micronozzle, using the MEMS fabrication technique. The etched surface was deposited by the thin platinum film, which is acted as the catalyst. Experiments were performed with the inlet mass concentration of the hydrogen peroxide from 50% to 90% and the pressure drop across the silicon chip from 2.5 to 20.0 kPa. The silicon chip is directly exposed in the environment thus the heat released via the catalytic chemical reactions is dissipated into the environment and the experiment was performed at the room temperature level. It is found that the two-phase flow with the catalytic chemical reactions display the cyclic behavior. A full cycle consists of a short fresh liquid refilling stage, a liquid decomposition stage followed by the bubble slug flow stage. At the beginning of the bubble slug flow stage, the liquid slug number reaches maximum, while at the end of the bubble slug flow stage the liquid slugs are quickly flushed out of the microchannels. Two or three large bubbles are observed in the inlet liquid plenum, affecting the two-phase distributions in microchannels. The bubble slug lengths, cycle periods as well as the mass flow rates are analyzed with different mass concentrations of hydrogen peroxide and pressure drops. The bubble slug length is helpful for the selection of the future microreactor length ensuring the complete hydrogen peroxide decomposition. Future studies on the temperature effect on the transient two-phase flow with chemical reactions are recommended.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

本文分析了"和平号"空间站气液两相流实验中获得的部分重力(0.1 g和0.014 g)条件下的流型特征及其相互转换条件,并将其和常重力与微重力两相流研究中较常用的流型转换模型的预测结果进行了比较.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High speed visualizations and thermal performance studies of pool boiling heat transfer on copper foam covers were performed at atmospheric pressure, with the heating surface area of 12.0 mm by 12.0 mm, using acetone as the working fluid. The foam covers have ppi (pores per inch) from 30 to 90, cover thickness from 2.0 to 5.0 mm, and porosity of 0.88 and 0.95. The surface superheats are from -20 to 190 K, and the heat fluxes reach 140 W/cm(2). The 30 and 60 ppi foam covers show the periodic single bubble generation and departure pattern at low surface superheats. With continuous increases in surface superheats, they show the periodic bubble coalescence and/or re-coalescence pattern. Cage bubbles were observed to be those with liquid filled inside and vented to the pool liquid. For the 90 ppi foam covers, the bubble coalescence takes place at low surface superheats. At moderate or large surface superheats, vapor fragments continuously escape to the pool liquid. Boiling curves of copper foams show three distinct regions. Region I and II are those of natural convection heat transfer, and nucleate boiling heat transfer for all the foam covers. Region III is that of either a resistance to vapor release for the 30 and 60 ppi foam covers, or a capillary-assist liquid flow towards foam cells for the 90 ppi foam covers. The value of ppi has an important effect on the thermal performance. Boiling curves are crossed between the high and low ppi foam covers. Low ppi foams have better thermal performance at low surface superheats, but high ppi foams have better one at moderate or large surface superheats and extend the operation range of surface superheats. The effects of other factors such as pool liquid temperature, foam cover thickness on the thermal performance are also discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

根据数字液压驱动单元的运行原理,分析了在空载与加载情况下该数字驱动单元的内部液体流动状态,并以这一流动状态原理为依据,改进设计了传统的液控单向阀。数字液压驱动单元样机及试验结果表明:该数字液压驱动单元与应用传统液控单向阀体的驱动单元相比,具有更加紧凑的体积、更高的响应速度及运行可靠性和显著的节能效果。

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The Electrical Resistance Tomography (ERT) technique possesses great potential in monitoring widely exiting industrial two/multi-phase flow. For vertical pipe flow and inclined pipe flow, some application studies with exciting results have been reported, but there is rarely a paper regarding the application of ERT to horizontal gas/liquid pipe flow. This paper addresses this issue and proposes a smart method, Liquid Level Detection method, to conventional ERT system. The enhanced ERT system using the new method can monitor horizontal pipe flow effectively and its application is no longer restricted by the flow conditions. Some experimental results from monitoring an air/water slug pipe flow are presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present paper, a theoretical model is studied on the flow in the liquid annular film, which is ejected from a vessel with relatively higher temperature and painted on the moving solid fiber. A temperature gradient, driving a thermocapillary flow, is formed on the free surface because of the heat transfer from the liquid with relatively higher temperature to the environmental gas with relatively lower temperature. The thermocapillary flow may change the radii profile of the liquid film. This process analyzed is based on the approximations of lubrication theory and perturbation theory, and the equation of the liquid layer radii and the process of thermal hydrodynamics in the liquid layer are solved for a temperature distribution on the solid fiber.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is obvious that the pressure gradient alone, the axial direction in a pipe flow keeps constant according to the Haoen-Poiseuille equation. However, recent experiments indicated that the distribution of the pressure seemed no longer linear for liquid flows in microtubes driven by high pressure (1-30MPa). Based on H-P equation with slip boundary condition and Bridgman's relation of viscosity vs. static pressure, the nonlinear distribution of pressure along the axial direction is analyzed in this paper. The revised standard Poiseuille number with the effect of pressure-dependent viscosity taken into account agrees well with the experimental results. Therefore, the dependence of the viscosity on the pressure is one of the dominating, factors under high driven pressure, and is represented by an important property coefficient et of the liquid.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

气液两相流体系是一个复杂的多变量随机过程体系,流型的定义、流型过渡准则和判别方法等方面的研究是多相流学科目前研究的重点内容。本文就与气液两相流流型及其判别有关的研究状况进行了回顾和评述,力图反映近年来气液两相流流型及其判别问题研究的状态和趋势。