105 resultados para lipid-peroxidation
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Following intraperitoneal injection of lanthanum and terbium chloride and their complexes of diethyltriaminopentagacetic acid (DTPA) to adult mice with a dose of 0.28 mmol/kg body weight/day for three days. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and the content of lipid end product, malonaldehyde (MDA) in the mice livers have been assayed respectively. The results show that the activity of SOD was increased and the content of MDA was reduced for LaCl3 treated mice and the two targets were not changed for TbCl3, but the activity of GSH-Px was reduced markedly for both LaCl3 and TbCl3 while the above three targets were not changed for La-DTPA and Tb-DTPA complexes.
Resumo:
The inhibitory effects of high molecular weight phlorotannins (HMP) from Sargassum kjellmanianum on mouse liver lipid peroxidation were investigated by spectrophotometric methods. The content of malondialdehyde (MDA) in liver samples was measured by TBA (thiobarbituric acid) assay. It showed that HMP significantly inhibited the generation of MDA in vivo and in situations induced by CCl4 and Fe2+-Vc ( ascorbic acid), and significantly decreased membrane swelling of mouse liver mitochondria, compared with controls ( p < 0.01). HMP were found to have strong anti-oxidative activity in inhibiting mouse liver lipid peroxidation.
Resumo:
The aim of this study was to determine the effect of long-term cryopreservation on physiological characteristics, the antioxidant activities and lipid peroxidation of red seabream sperm which were respectively cryopreserved with 15% dimethylsulfoxide (Me2SO) for 1 month, 13 months, 26 months, 48 months and 73 months. The motility and fertility of post-thaw sperm decreased with the storage time going on. The highest motility (87.67 +/- 2.52%) was obtained in sperm cryopreserved for 1 month and the lowest (50.67 +/- 5.31%) was in sperm for 73 months. There were no significant differences (p < 0.05) in fertilization rates of sperm cryopreserved for 1 month (71.33 +/- 8.84%), 13 months (69.22 +/- 1.02%) and 26 months (60.33 +/- 2.33%); however, the sperm fertility decreased significantly for 48 months (47.22 +/- 3.89%) and 73 months (39.56 +/- 0.69%) storage. In addition, superoxide dismutase (SOD) activities of sperm were at a stable level for less than 26 months storage, then, decreased significantly after 48 months storage. Catalase (CAT) activities of sperm cryopreserved for 13 months, 26 months, 48 months and 73 months were significantly lower than that for 1 month. There were no significant differences in the malondialdehyde (MDA) level of sperm for less than 13 months storage. After 26 months storage, the concentration of MDA increased significantly, and the highest concentration (3.22 +/- 0.05 nmol/mgprot) was obtained in 73 months storage sperm. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
本文以不同水分胁迫下的四种禾本科牧草(羊草、冰草、洽草、糙隐子草)为对象,比较研究了水分胁迫对植物的生理生态损伤,以及植物的渗透调节、内源保护酶系统与水分胁迫的关系。 结果表明:水分胁迫对植物造成一定的影响/伤害,表现在相对含水量、高度、生物量、总叶绿素、总糖及蛋白质含量均降低。在同一水分胁迫梯度时,植物的保水能力以羊草最高,糙隐子草、冰草次之,洽草最低。参与渗透调节的物质以K+、游离非必须氨基酸为主;以Na+,游离必须氨基酸、糖为辅,不同植物渗透调节物质不同。供试植物的渗透调节能力以羊草最强。 在水分胁迫下,植物细胞膜的脂质过氧化程度降低,说明这几种植物具有较强的内源保护酶系统,表现在SOD、POD活性明显增高;ASA和还原性糖的缓慢变化。说明在水分胁迫下植物通过维持较高的保护酶活性,以减轻膜脂过氧化作用和膜的损伤。保护酶系统中的各组分所起的作用与物种有关。在供试植物中冰草、隐子草的这种保护能力强于羊草、洽草。渗透调节和内源保护酶系统或其一可能是这四种牧草具较强抗旱性的原因之一。
Resumo:
人类活动产生的氯氟烃化合物破坏了大气臭氧层,导致了到达地球表面的UV-B辐射大幅度增加。UV-B辐射增强可以影响到植物的生长、形态与发育等各个方面,因此有关增强UV-B辐射对植物的影响,及其与许多环境因子复合作用的研究都已经广泛开展。但是增强UV-B辐射与温度,特别是与低温的相互作用的研究报道很少。在北半球的晚秋至早春这段时期里,一些越冬生长的植物将面临着UV-B辐射增强和低温的双重胁迫,因此,迫切需要进行UV-B辐射和低温生长环境下植物的响应及其机制的研究。 以人工气候生长室中生长的冬小麦(Triticum aestivum)幼苗为试验材料,研究了低剂量(4.2 kJ m-2 d-1 UV-BBE,LUVB)和较高剂量(7.0 kJ m-2 d-1 UV-BBE,HUVB)UV-B辐射处理对20/16℃条件下幼苗抗寒力的交叉适应性及其抗氧化系统的反应;同时还研究了在两种生长温度(25/20℃和10/5℃)条件下,低剂量(4.2 kJ m-2 d-1 UV-BBE,LUVB)和超高剂量(10.3 kJ m-2 d-1 UV-BBE,SHUVB)UV-B辐射处理幼苗的生长速率、光合与荧光参数、叶黄素循环色素、抗氧化系统、以及抗寒性和酚类物质等生理反应,以期阐明不同温度条件下生长的冬小麦对UV-B辐射的生长、光合作用以及抗寒性响应与适应机制。主要结果如下: 1.在LUVB辐射处理下,在20/16℃和25/20℃条件下生长的冬小麦幼苗LT50值都显著降低,HUVB辐射处理对在20/16℃条件下生长的幼苗LT50值也可以显著降低,而SHUVB辐射对25/20℃条件下生长的幼苗LT50值没有显著影响。但是,LUVB和SHUVB辐射处理都导致了10/5℃条件下生长的幼苗LT50值的显著增加。表明适当的UV-B辐射能增强较高温度(20/16℃或25/20℃)条件下冬小麦幼苗的抗寒力,即表现出对冷冻低温的交叉适应性,但低温(10/5℃)生长条件却削弱了UV-B辐射下冬小麦的抗寒能力。 2.在20/16℃条件下接受UV-B辐射预处理的幼苗在-6℃条件下冷冻胁迫6 h再缓慢恢复6 h后,与未进行UV-B辐射处理的对照相比,其叶片过氧化氢酶(CAT)、愈创木酚过氧化物酶(GPX)、谷胱甘肽还原酶(GR)活性,谷胱甘肽氧化还原比例(GSH/GSSG)都显著提高,而由硫代巴比妥酸反应物质(TBARS)代表的膜质过氧化程度显著低于对照。此外,UV-B辐射期间处理幼苗的H2O2含量较对照显著增加,而冷冻恢复以后却明显低于对照。表明UV-B辐射诱导的抗寒力的提高应该与冷冻恢复后植株体内抗氧化系统的上调表达有关,H2O2可能参与了UV-B辐射对低温的交叉适应的信号传导。 3.除25/20℃生长条件下的LUVB处理的小麦幼苗外,UV-B辐射显著降低幼苗的相对生长速率(RGR)、净光合速率(Pn)、光系统II最大量子产量(Fv/Fm)、光系统II实际量子产量((F΄m−Fs)/F΄m)以及光化学淬灭(qP),但是UV-B辐射并不影响叶片胞间CO2浓度(Ci),而且冬小麦幼苗生长和光合作用的抑制被增加的UV-B辐射剂量和降低的温度加强。UV-B辐射引起的光抑制由非气孔限制所导致,而且主要与PS II光化学效率降低有关。 4.UV-B辐射显著增加了两个温度条件(20/16℃或25/20℃)下生长的冬小麦幼苗叶黄素循环过程中紫黄素(V)的合成,但抑制了V向玉米黄质(Z)的转化,从而造成了对照与LUVB辐射处理幼苗之间的叶片中脱环氧化比例(DEPS)和NPQ无显著性差异,但SHUVB辐射处理幼苗叶片中DEPS和NPQ显著降低。因此,在本试验条件下,增强UV-B辐射处理的冬小麦可能并不通过热耗散形式形成光保护机制,光抑制形成的过剩激发能的耗散可能更多地通过代谢途径来实现。 5.UV-B辐射处理提高了在25/20℃条件下幼苗的超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)和GR等活性,以及抗坏血酸氧化还原比例(AsA/DHA)和GSH/GSSG;但是在10/5℃下,UV-B辐射除了导致SOD和CAT活性升高之外,对APX活性和AsA/DHA并不产生明显影响,但GPX和GSH/GSSG则显著降低。说明UV-B辐射幼苗的抗氧化系统在较高生长温度下显著地增强,而在低温10/5℃下被严重地削弱或降低,即低温阻止了代谢途径的光保护机制的正常运转。 6.多酚物质在UV-B辐射或低温10/5℃条件下都能显著地累积,且在UV-B辐射和低温复合作用下增加尤其显著,表明多酚物质在两个温度生长条件下特别是低温条件下都参与了对UV-B辐射幼苗的保护。 7.在高温条件下仅仅SHUVB处理的幼苗TBARS含量显著增加,而低温10/5℃条件下两个UV-B辐射处理都非常显著地上升,说明与高温生长条件相比较,低温加重了UV-B辐射引起的氧化胁迫,低温10/5℃条件下幼苗多酚的增加以及抗氧化系统的部分增强都没有能阻止UV-B辐射对幼苗的伤害。
Resumo:
Oxidative stress response after prolonged exposure to a low dose of microcystins (MCs) was studied in liver, kidney and brain of domestic rabbits. Rabbits were treated with extracted MCs (mainly MC-LR and MC-RR) at a dose of 2 MC-LReq. mu g/kg body weight or saline solution every 24 h for 7 or 14 days. During the exposure of MCs, increase of lipid peroxidation (LPO) levels were detected in all the organs studied, while antioxidant enzymes responded differently among different organs. The enzyme activities Of Superoxide dismutase (SOD). catalase (CAT) and glutathione reductase (GR) in liver decreased in the MCs treated animals. In brain, there were obvious changes in glutathione peroxidase (GPx) and GR, while only CAT was obviously influenced in kidney. Therefore, daily exposure at a lower dosage of MCs, which mimicked a natural route of MCs. could also induce obvious oxidative stress in diverse organs of domestic rabbits. The oxidative stress induced by MCs in brain was as serious as in liver and kidney, suggesting that brain may also be a target of MCs in mammals. And it seems that animals may have more time to metabolize the toxins or to form an adaptive response to reduce the adverse effects when exposed to the low dose of MCs. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
UV-B-induced oxidative damage and the protective effect of exopolysaccharides (EPS) in Microcoleus vaginatus, a cyanobacterium isolated from desert crust, were investigated. After being irradiated with UV-B radiation, photosynthetic activity (Fv/Fm), cellular total carbohydrates, EPS and sucrose production of irradiated cells decreased, while reducing sugars, reactive oxygen species (ROS) generation, malondialdehyde (MDA) production and DNA strand breaks increased significantly. However, when pretreated with 100 mg/L exogenous EPS, EPS production in the culture medium of UV-B stressed cells decreased significantly; Fv/Fm, cellular total carbohydrates, reducing sugars and sucrose synthase (SS) activity of irradiated cells increased significantly, while ROS generation, MDA production and DNA strand breaks of irradiated cells decreased significantly. The results suggested that EPS exhibited a significant protective effect on DNA strand breaks and lipid peroxidation by effectively eliminating ROS induced by UV-B radiation in M. vaginatus.
Resumo:
This study examined the toxic effects of microcystins on mitochondria of liver and heart of rabbit in vivo. Rabbits were injected i.p. with extracted microcystins (mainly MC-RR and -LR) at two doses, 12.5 and 50 MCLReq. mu g/kg bw, and the changes in mitochondria of liver and heart were studied at 1, 3,12, 24 and 48 h after injection. MCs induced damage of mitochondrial morphology and lipid peroxidation in both liver and heart. MCs influenced respiratory activity through inhibiting NADH dehydrogenase and enhancing succinate dehydrogenase (SDH). MCs altered Na+-K+-ATPase and Ca2+-Mg2+-ATPase activities of mitochondria and consequently disrupted ionic homeostasis, which might be partly responsible for the loss of mitochondrial membrane potential (MMP). MCs were highly toxic to mitochondria with more serious damage in liver than in heart. Damage of mitochondria showed reduction at 48 h in the low dose group, suggesting that the low dose of MCs might have stimulated a compensatory response in the rabbits. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The allelopathic effects of two submerged macrophytes, Najas minor and Potamogeton malaianus, on growth, photosynthesis and antioxidant systems of Scenedesmus obliquus were assessed in coexistence experiments. The growth of S. obliquus was significantly suppressed by the two macrophytes. Moreover, P. malaianus showed the stronger growth inhibition effect on S. obliquus than N. minor. P. malaianus obviously inhibited the photosynthetic rate of S. obliquus, while N. minor had no inhibitory effect. Lipid peroxidation and three antioxidant enzymes activities (superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD)) of S. obliquus were investigated at the end of the co-cultures. The two macrophytes significantly enhanced the malondialdehyde (MDA) content, a product of lipid peroxidation, in S. obliquus. Activities of the three antioxidant enzymes of S. obliquus were simultaneously stimulated in P. malaianus treatment, while no significant variation of POD activity was observed in N. minor treatment. The results indicated that the two macrophytes N. minor and P. malaianus had significant allelopathic effects on S. obliquus. However, the two macrophytes influenced S. obliquus in different ways.
Resumo:
Unlike Escherichia coli, the cyanobacterium Synechocystis sp. strain PCC 6803 is insensitive to chill (5 degrees C) in the dark but rapidly losses viability when exposed to chill in the light (100 mu mol photons m(-2) s(-1)). Preconditioning at a low temperature (15 degrees C) greatly enhances the chill-light tolerance of Synechocystis sp. strain PCC 6803. This phenomenon is called acquired chill-light tolerance (ACLT). Preconditioned wild-type cells maintained a substantially higher level of alpha-tocopherol after exposure to chill-light stress. Mutants unable to synthesize alpha-tocopherol, such as slr1736, slr1737, slr0089, and slr0090 mutants, almost completely lost ACLT. When exposed to chill without light, these mutants showed no or a slight difference from the wild type. When complemented, the slr0089 mutant regained its ACLT. Copper-regulated expression of slr0090 from P-petE controlled the level of et-tocopherol and ACLT. We conclude that alpha-tocopherol is essential for ACLT of Synechocystis sp. strain PCC 6803. The role of a-tocopherol in ACLT may be based largely on a nonantioxidant activity that is not possessed by other tocopherols or pathway intermediates.