119 resultados para lipid bilayer
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Here, we demonstrated dimethyldioctadecylammonium bromide (DODAB), a cationic lipid, bilayer coated Au nanoparticles (AuNPs) could efficiently deliver two types of plasmid DNA into human embryonic kidney cells (HEK 293) in the presence of serum. The transfection efficiency of AuNPs was about five times higher than that of DODAB. The interaction of AuNPs with DNA was characterized with dye intercalation assay and agarose gel electrophoresis. The morphology of the complex of AuNPs with DNA was observed with scanning electron microscope (SEM). The intracellular trafficking of the complex was monitored with transmission electron microscope (TEM).
Resumo:
In this study, varieties of lipid bilayer-protected gold nanoparticles (AuNPs) were synthesized through a simple wet chemical method, and then the effect of freeze-thawing on the as-prepared AuNPs was investigated. The freeze-thawing process induced fusion or fission of lipid bilayers tethered on the AuNPs. The UV-vis spectra and transmission electron microscopy experiments revealed that the disruption of lipid bilayer structures on the nanoparticles led to the fusion or aggregation of AuNPs.
Resumo:
Nonviral vectors are safer than viral systems for gene therapy applications. However, the limited efficacy always prevents their being widely used in clinical practice. Aside from searching new gene nonviral vectors, many researchers focus on finding out new substances to improve the transfection efficiency of existent vectors. In this work, we found a transfection enhancer, nocodazole (NCZ), for dimethyldioctadecylammonium (DODAB, a cationic lipid) bilayer coated gold nanoparticles (AuNPs) mediated gene delivery. It was found that NCZ produces 3-fold transfection enhancement to HEK 293T cells assessed by flow cytometry (FCM). The result was further confirmed by luciferase assay, in which NCZ induced more than 5 times improvement in transfection efficiency after 48 h of transfection. The results from the inductively coupled plasma mass spectrometry (ICP-MS) and FCM showed that NCZ did not affect the internalization of DODAB-AuNPs/DNA complexes. The trafficking of the complexes by transmission electron microscopy (TEM) indicated that the interrupted transportation of the complexes to the lysosomes contributed greatly to the transfection enhancement.
Resumo:
Didodecyldimethylammonium bromide (DDAB) lipid bilayer-protected gold nanoparticles (AuNPs), which were stable and hydrophilic, were synthesized by in situ reduction of HAuCl4 with NaBH4 in an aqueous medium in the presence of DDAB. As-prepared nanoparticles were characterized by UV-vis spectra, transmission electron microscopy, dynamic light scattering analysis, and X-ray photoelectron spectroscopy. All these data supported the formation of AuNPs. Fourier transform infrared spectroscopy (FTIR) and differential thermal analysis/thermogravimetric analysis data revealed that DDAB existed in a bilayer structure formed on the particle surface, resulting in a positively charged particle surface. The FTIR spectra also indicated that the DDAB bilayer coated on the surface of AuNPs was probably in the ordered gel phase with some end-gauche defects. On the basis of electrostatic interactions between such AuNPs and anionic polyelectrolyte poly(sodium 4-styrenesulfonate) (PSS), we successfully fabricated (PSS/AuNP)(n) multilayers on a cationic polyelectrolyte poly(ethylenimine) coated indium tin oxide substrate via the layer-by-layer self-assembly technique and characterized as-formed multilayers with UV-vis spectra and atomic force microscopy.
Resumo:
Gramicidin within the lipid bilayer matrix is a well-known channel-forming polypeptide, but the mechanism of the ions across the membrane induced by gramicidin is not well understood. We found that at very low concentration of gramicidin in a bilayer lipid membrane, the channel behavior was controlled by the voltage applied across the membrane. When the voltage is higher than 75 mV, the channel is closing, while lower than 75 mV, the channel is opening. But when the concentration of the gramicidin in the BLMs is high, the channel behavior is changed into voltage-independent. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Dithiols of N-hexadecyl-3,6-di(p-mercaptophenylacetylene)carbazole (HDMC) have been synthesized and employed to form self-assembled monolayers (SAMs) on gold. One characteristic of the HDMC molecule is its peculiar molecular structure consisting of a large and rigid headgroup and a small and flexible alkyl-chain tail. HDMC adsorbates can attach to gold substrates by a strong Au-S bond with weak van der Waals interactions between the alkyl-chain tails, leading to a loosely packed hydrophobic SAM. In this way we can couple hybrid bilayer membranes (HBMs) to gold surfaces with more likeness to a cell bilayer than the conventional HBMs based on densely packed long-chain alkanethiol SAMs. The insulating properties and stability of the HDMC monolayer as well as the HDMC/lipid bilayer on gold have been investigated by electrochemical techniques including cyclic voltammetry and impedance spectroscopy. To test whether the quality of the bilayer is sufficiently high for biomimetic research, we incorporated the pore-forming protein a-hemolysin) and the horseradish peroxidase into the bilayers, respectively.
Resumo:
Ru(bpy)(3)(2+) electrochemiluminescence (ECL) method and electrocatalysis method were first used to study the ion-gate behavior of supported lipid bilayer membrane (sBLM). We found that sBLM, made of dimethyldioctadecylammonium bromide (a kind of synthetic lipid), showed ion-gate behavior for the permeation of Ru(bpy)(3)(2+) in the presence of perchlorate anion. There existed a threshold concentration (0.1 muM) of perchlorate anion for ion-gate opening. Below the threshold the ion-gate was closed. Above the threshold, the number of opened ion-gate sites increased with the increase of perchlorate anion concentration and leveled off at concentrations higher than 1200 muM. Based on it, a new sensor for perchlorate was developed. Furthermore, the opening and closing of the ion-gate behavior was reversible, which means the sensor can repeatedly be used.
Resumo:
Chitosan has shown its potential as a non-viral gene carrier and an adsorption enhancer for subsequent drug delivery to cells. These results showed that chitosan acted as a membrane perturbant. However, there is currently a lack of direct experimental evidence of this membrane perturbance effect, especially for chitosans with low molecular weight (LMW). In this report, the interaction between a lipid (didodecyl dimethylammonium bromide; DDAB) bilayer and chitosan with molecular weight (MW) of 4200 Da was studied with cyclic voltammetry (CV), electrochemical impedance spectroscopy and surface plasmon resonance (SPR). A lipid bilayer was formed by-fusion of oppositely charged lipid vesicles on a mercaptopropionic acid (MPA)-modified gold surface to mimic a cell membrane. The results showed that the LMW chitosan could disrupt the lipid bilayer, and the effect seemed,to be in a concentration-dependent manner.
Resumo:
Atomic force microscopy (AFM) and lateral force microscopy (LFM) were used simultaneously to analyze a model membrane bilayer structure consisting of a phospholipid outer monolayer deposited onto organosilane-derivatized mica surfaces, which were constructed by using painting and self-assembly methods. The phospholipid used as outer monolayer was dimyristoylphosphatidylcholine (DMPC). The hydrocarbon-covered substrate that formed the inner half bilayer was composed of a self-assembly monolayer (SAM) of octadecyltrichloroorganosilane (OTS) on mica. SAMs of DMPC were formed by exposing hydrophobic mica to a solution of DMPC in decane/isobutanol and subsequently immersing into pure water. AFM images of samples immersed in solution for varying exposure times showed that before forming a complete monolayer the molecules aggregated into dense islands (2.2-2.6 nm high) on the surface. The islands had a compact and rounded morphology. LFM, coupled with topographic data obtained with the atomic force mode, had made possible the distinction between DMPC and OTS. The rate constant of DMPC growth was calculated. This is the first systematic study of the SAM formation of DMPC by AFM and LFM imaging. It reveals more direct information about the film morphology than previous studies with conventional surface analytical techniques such as infrared spectroscopy, X-ray, or fluorescence microscopy.
Resumo:
As a kind of supported bilayer lipid membranes, hybrid bilayer membrane (HBM) was applied to the interaction between Ca2+ and lipid for the first time. By using Fe(CN)(6)(3-) as a probe, we found that Ca2+ could induce the ion channel of HBM to be in open state. STM images study proved this phenomenon.
Resumo:
A paint-freeze method for preparing self-assembled alkanethiol/phospholipid bilayers on a gold surface has been described (by cyclic voltammetry, a.c impedance, polarized FTIR-ATR) to be well-ordered and packed, stable, solvent-free bilayers. The lipid order parameter was 0.67, calculated from the dichroic ratio, consistent with a well-ordered lipid film in which the methylene groups have segmental flexibility and are disordered to a degree which is typical for a lipid bilayer in the liquid-crystalline phase. Such a supported membrane provides a useful way for studies in biophysics, physiology and electrochemistry.
Resumo:
Cyclic voltammetry was employed to study the influence of sterols on the lipophilic ion transport through the BLM. The mole fraction of the sterols (cholesterol, oxidized cholesterol). as referred to total lipid, was varied in a range of 0-0.8. Data demonstrate that a thin-layer model is suitable to this BLM system. By this model, the number of charges transported per lipophilic ion, the concentration of the ion in the membrane bulk phase and the aqueous/membrane phase partition coefficient could be calculated. These parameters proved that sterols had an obvious influence on the lipophilic ion transport. Cholesterol had a stronger influence on the ion transport than oxidized cholesterol. Its incorporation into egg lecithin membranes increased the partition coefficient beta of the ion up to more than 3-fold. Yet, oxidized cholesterol incorporated into egg lecithin membranes only increased the beta up to less than 2-fold, and the beta had no great variation at different oxidized cholesterol mole fractions. The higher beta obtained was partly due to the trace amount of solvent existing in the core of the lipid bilayers. At the different sterol mole fractions, combining the change of beta with the change of peak current, we also concluded that sterols had somewhat inhibiting effect on the ion transport at the higher sterols mole fraction (>0.4). These results are explained in terms of the possible change of dipole potential of the membrane produced by sterols and the decrease of the membrane fluidity caused by the condensation effect of sterols and the thinning effect caused by sterols. The substituting group (in the oxidized cholesterol) had some inhibiting effects on the ion transport at higher mole fractions (oxidized cholesterol mole fraction >0.4).
Resumo:
The infrared spectra of the bilayer system dodecylammonium chloride has been studied as a function of temperature. Unusual splitting of some vibrational modes helps us to characterize the structure of different solid states. This study provided the evidence for the occurrence of an order-disorder phase transition whose onset occurs at 327 K and its completion ends at 339 K. In the low temperature phase below 327 K, the virgin crystals form a well-ordered phase with all-transhydrocarbon chains. In the intermediate state between 327 and 339 K, the data demonstrate the introduction of intramolecular as well as intermolecular disorder. The coexistence of solid and liquid-crystal-like states is shown by the persistence of factor group splittings together with the existence of defect bands in the wide intermediate temperature range. In the high temperature phase over 339 K the crystals convert to a liquid-crystal-like system with extensive motional and conformational disorder, but still show characteristics in their infrared spectra which indicate the presence of ordered segments in the hexagonal solid phase.
Resumo:
Monotopic membrane proteins are membrane proteins that interact with only one leaflet of the lipid bilayer and do not possess transmembrane spanning segments. They are endowed with important physiological functions but until now only few of them have been studied. Here we present a detailed biochemical, enzymatic and crystallographic characterization of the monotopic membrane protein sulfide:quinone oxidoreductase. Sulfide:quinone oxidoreductase is a ubiquitous enzyme involved in sulfide detoxification, in sulfide-dependent respiration and photosynthesis, and in heavy metal tolerance. It may also play a crucial role in mammals, including humans, because sulfide acts as a neurotransmitter in these organisms. We isolated and purified sulfide:quinone oxidoreductase from the native membranes of the hyperthermophilic bacterium Aquifex aeolicus. We studied the pure and solubilized enzyme by denaturing and non-denaturing polyacrylamide electrophoresis, size-exclusion chromatography, cross-linking, analytical ultracentrifugation, visible and ultraviolet spectroscopy, mass spectrometry and electron microscopy. Additionally, we report the characterization of its enzymatic activity before and after crystallization. Finally, we discuss the crystallization of sulfide:quinone oxidoreductase in respect to its membrane topology and we propose a classification of monotopic membrane protein crystal lattices. Our data support and complement an earlier description of the three-dimensional structure of A. aeolicus sulfide:quinone oxidoreductase (M. Marcia, U. Ermler, G. Peng, H. Michel, Proc Natl Acad Sci USA, 106 (2009) 9625-9630) and may serve as a reference for further studies on monotopic membrane proteins. (C) 2010 Elsevier B.V. All rights reserved.