99 resultados para light-activated heterotrophic growth
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The unicellular cyanobacterium Synechocystis sp. PCC6803 can grow heterotrophically in complete darkness, given that a brief period of illumination is supplemented every day (light-activated heterotrophic growth, LAHG), or under very weak ( < 0.5 mumol m(-2) s(-1)) but continuous light. By random insertion of the genome with an antibiotic resistance cassette, mutants defective in LAHG were generated. In two identical mutants, sll0886, a tetratricopeptide repeat (TPR)-family membrane protein gene, was disrupted. Targeted insertion of sll0886 and three downstream genes showed that the phenotype was not due to a polar effect. The sll0886 mutant shows normal photoheterotrophic growth when the light intensity is at 2.5 mumol m(-2) s(-1) or above, but no growth at 0.5 mumol m(-2) s(-1). Homologs to sll0886 are also present in cyanobacteria that are not known of LAHG. sll0886 and homologs may be involved in controlling different physiological processes that respond to light of low fluence. (C) 2003 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
The effects of temperature and light on the growth and geosmin production of Lyngbya kuetzingii were determined. Of the three temperatures tested, 10, 25 and 35A degrees C, the maximal geosmin concentration and geosmin productivity were yielded at 10A degrees C, while the highest chl a production was observed at 25A degrees C. In the studies on light intensity, the maximal geosmin concentration and geosmin productivity were observed at 10 mu mol m(-2) s(-1), while the highest chl a production was at 20 mu mol m(-2) s(-1). It was suggested that more geosmin was synthesized with lower chl a demand. Meanwhile, the relative amounts of extra- and intracellular geosmin were investigated. Under optimum growth conditions (20 mu mol m(-2) s(-1), 25A degrees C; BG-11 medium), the amounts of extracellular geosmin increased as the growth progressed and reached the maximum in the stationary phase, while the intracellular geosmin reached its maximum value in the late exponential phase, and then began to decline. However, under the low temperature (10A degrees C) or light (10 mu mol m(-2) s(-1)) conditions, more intracellular geosmin was synthesized and mainly accumulated in the cells. The proportions of extracellular geosmin were high, to 33.33 and 32.27%, respectively, during the stationary phase at 35A degrees C and 20 mu mol m(-2) s(-1). It was indicated that low temperature or light could stimulate geosmin production and favor the accumulation of geosmin in cells, while more intracellular geosmin may be released into the medium at higher temperatures or optimum light intensity.
Resumo:
Synechocystis sp. PCC 6803 exposed to chill (5 degrees C)-light (100 mu mol photons m(-2) s(-1)) stress loses its ability to reinitiate growth. From a random insertion mutant library of Synechocystis sp. PCC 6803, a sll1242 mutant showing increased sensitivity to chill plus light was isolated. Mutant reconstruction and complementation with the wild-type gene confirmed the role of sll1242 in maintaining chill-light tolerance. At 15 degrees C, the autotrophic and mixotrophic growth of the mutant were both inhibited, paralleled by decreased photosynthetic activity. The expression of sll1242 was upregulated in Synechocystis sp. PCC 6803 after transfer from 30 to 15 degrees C at a photosynthetic photon flux density of 30 mu mol photons m(-2) S-1. sll1242, named ccr (cyanobacterial cold resistance gene)- 1, may be required for cold acclimation of cyanobacteria in light.
Resumo:
Potamogeton crispus is a cosmopolitan aquatic species and is widely used as a pioneer species for vegetation restoration of eutrophic lakes. However, many restoration projects applying P. crispus turions have not been successful. Earlier studies focused on effects of light and temperature on turion germination. The purpose of this study was to determine whether sediment anoxia and light interactively affected the turion germination and early growth of P. crispus. Anoxic conditions in the experiment were produced by adding sucrose to the sediment. The germination rate of the turions was 68-73% lower in the highly anoxic condition treatment than in the control. Medium light intensity (10% of natural light at the water surface) was more favorable for germination under slightly anoxic conditions than either low or high light intensity. The growth of newly-formed sprouts was also significantly inhibited by sediment anoxia. Photosynthesis and shoot biomass were reduced under sediment anoxia, whereas total chlorophyll content, root biomass, and soluble protein content were highest in the low anoxic condition treatment. Medium light improved net photosynthesis and biomass production of the sprouts. We conclude that turion germination and sprout growth can be significantly inhibited by sediment anoxia. Medium light intensity may alleviate this inhibition by anoxia, but light has little effect when sediment anoxia is severe. For the purposes of vegetation restoration, more attention should be paid to the role of sediment anoxia, and it is necessary to improve sediment and light conditions for turion germination and early growth of P. crispus in eutrophic lakes. These results will contribute to a more complete understanding of turion germination dynamics of P. crispus and will be useful for future restoration programs.
Resumo:
From a random insertion mutant library of Synechocystis sp. PCC 6803, a mutant defective in photoautotrophic growth was obtained. The interrupted gene was identified to be slr2094 (rbpl), which encodes the fructose-1,6-biphosphatase (FBPase)/sedoheptulose-1,7-biphosphatase (SBPase) bifunctional enzyme (F-I). Two other independently constructed slr2094 mutants showed an identical phenotype. The FBPase activity was found to be virtually lacking in an slr2094 mutant, which was sensitive to light under mixotrophic growth conditions. These results indicate that slr2094 is the only active FBPase-encoding gene in this cyanobacterium. Inactivation of photosystem II by interrupting psbB in slr2094 mutant alleviated the sensitiveness to light. This report provides the direct genetic evidence for the essential role of F-I in the photosynthesis of Synechocystis sp. PCC 6803. (c) 2007 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.
Resumo:
A high-Al-content AlGaN epilayer is grown on a low-temperature-deposited AlN buffer on (0001) sapphire by low pressure metalorganic chemical vapour deposition. The dependence of surface roughness, tilted mosaicity, and twisted mosaicity on the conditions of the AlGaN epilayer deposition is evaluated. An AlGaN epilayer with favourable surface morphology and crystal quality is deposited on a 20 nm low-temperature-deposited AlN buffer at a low V/III flow ratio of 783 and at a low reactor pressure of 100 Torr, and the adduct reaction between trimethylaluminium and NH3 is considered.
Resumo:
Mg-doped AlGaN and GaN/AlGaN superlattice are grown by metalorganic chemical vapour deposition (MOCVD). Rapid thermal annealing (RTA) treatments are carried out on the samples. Hall and high resolution x-ray diffraction measurements are used to characterize the electrical and structural prosperities of the as-grown and annealed samples, respectively. The results of hall measurements show that after annealing, the Mg-doped AlGaN sample can not obtain the distinct hole concentration and can acquire a resistivity of 1.4 x 10(3) Omega cm. However, with the same annealing treatment, the GaN/AlGaN superlattice sample has a hole concentration of 1.7 x 10(17) cm(-3) and of Mg acceptors, which leads to higher hole concentration and lower p-type resistivity.
Resumo:
The growth, mortality and digestive enzymes (trypsin, amylase and lipase) in miiuy croaker Miichthys miiuy larvae and juveniles (2-53 dph) were investigated at four photoperiods: 24L:OD), 18L:6D, 12L:12D and OL:24D. Larvae could not feed at OL:24D and did not survive up to 7 dph. In the 24L:OD, 18L:6D, 12L:12D groups, photoperiod had not significant effects on the growth of the rniiuy croaker younger than 20 dph. However, their total length and specific growth rate (SGR) were significantly larger at 18L:6D and 24L:OD than 12L:12D after 20 dph. Photoperiod also affected the mortality of the first feeding larvae (5 dph). being apparently higher in 5 dph larvae at OL:24D (60%) than at other photopenods (20-27%), but no significant differences in mortality were found among other photoperiods. High mortality of the miiuy croaker in 12L:12D, 18L:6D and 24 L:OD groups mainly occurred from 5 (20-27%) to 11 dph (11-16%) and tended to decrease gradually from 15 dph onwards. Digestive enzymes activities in the rniiuy croaker larvae and juveniles had a similar change trend with age at all photoperiods. They underwent drastic changes with age. The specific activity of lipase was significantly higher at 18L:6D and 24L:0D than 12L:12D, but there were no significant differences in specific activities of either trypsin or amylase among photoperiods. With regard to the total length, SGR, survival and digestive enzyme activities, our findings suggested that the optimal light regime for the culture of miiuy croaker during the early life stage was 18L:6D. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Bleached mutants of Euglena gracilis were obtained by treatment with ofloxacin (Ofl) and streptomycin (Sm) respectively. As shown by electron microscopy, the residual plastids contain prothylakoids in an Ofl mutant, and the highly developed and tightly stacked membranous structure found in cells of two Sm, mutants. Nine genes of the plastid genome were examined with PCR, showing that ribosomal protein genes and most other plastid genes were lost in all but one Sm mutant. Using differential display and RT-PCR, it was shown that chloroplast degeneration could cause changes in transcription of certain nucleus-encoded genes during heterotrophic growth in darkness.
Resumo:
Heterotrophic and anaerobic microalgae are of significance in both basic research and industrial application. A microalga strain was isolated from a wastewater treatment pond and identified as Chlorella sorokiniana Shihira et W. R. Krauss GXNN01 in terms of morphology, physiology, and phylogeny. The strain grows rapidly in heterotrophic or mixotrophic conditions with addition of various carbon sources, and even in anaerobic conditions. The maximum growth rate reached 0.28 d(-1) when using D,L-malate as the carbon source, and the protein content of the microalgae was 75.32% in cell dry weight. The strain was shown to be capable of (1) utilizing D, L-malate only with light, (2) inhibiting photosynthesis in mixotrophic growth, and (3) growing in anaerobic conditions with regular photosynthesis and producing oxygen internally. This study demonstrates the influence of oxygen (aerobic vs. anaerobic) and metabolic regime (autotrophy, mixotrophy, heterotrophy) on the physiological state of the cell.
Resumo:
Phytoplanktonic species acclimated to high light are known to show less photoinhibition. However, little has been documented on how cells grown under indoor conditions for decades without exposure to UV radiation (UVR, 280-400 nm) would respond differently to solar UVR compared to those in situ grown under natural solar radiation. Here, we have shown the comparative photosynthetic and growth responses to solar UVR in an indoor-(IS) and a naturally grown (WS) Skeletonema costatum type. In short-term experiment (<1 day), phi(PSII) and photosynthetic carbon fixation rate were more inhibited by UVR in the IS than in the WS cells. The rate of UVR-induced damages of PSII was faster and their repair was significantly slower in IS than in WS. Even under changing solar radiation simulated for vertical mixing, solar UVR-induced higher inhibition of photosynthetic rate in IS than in WS cells. During long-term (10 days) exposures to solar radiation, the specific growth rate was much lower in IS than WS at the beginning, then increased 3 days later to reach an equivalent level as that of WS. UVR-induced inhibition of photosynthetic carbon fixation in the IS was identical with that of WS at the end of the long-term exposure. The photosynthetic acclimation was not accompanied with increased contents of UV-absorbing compounds, indicating that repair processes for UVR-induced damages must have been accelerated or upgraded. (C) 2008 Elsevier B.V. All rights reserved.