8 resultados para levee
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Recently, as oil exploitation has become focused on deepwater slope areas. more multi-channel high resolution 2D and 3D seismic data were acquired in the deepwater part of the Qiongdongnan Basin, northern South China Sea. Based on 3D seismic data and coherence time slice, RMS and 3D visualization, a series of deepwater channels were recognized on the slope that probably developed in the late Quaternary period. These channels trend SW-NE to W-E and show bifurcations, levees, meander loops and avulsions. High Amplitude Reflections (HARs), typical for channel-levee complexes, are of only minor importance and were observed in one of the channel systems. Most of the detected channels are characterized by low-amplitude reflections, and so are different from the typical coarse-grained turbidite channels that had been discovered worldwide. The absence of well data in the study area made it difficult to determine the age and lithology of these channels. Using a neighboring drill hole and published data about such depositional systems worldwide, the lithology of these channels is likely to be dominated by mudstones with interbedded thin sandstones. These channels are formed by turbidity currents originated from the little scale mountain river of mid-Vietnam in SW direction and were probably accompanied by a relative sea level drop in the last glacial age. These channels discovered on the northern South China Sea slope are likely to be fine-grained, mud-dominant and low N:G deposits in a deepwater paleogeographic setting. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This thesis is based on the research project of Study on the Geological Characteristics and Remaining Oil Distribution Law of Neogene Reservoirs in Liunan Area, which is one of the key research projects set by PetroChina Jidong Oilfield Company in 2006. The determination of remaining oil distribution and its saturation changes are the most important research contents for the development and production modification of oilfields in high water-cut phases. Liunan oilfield, located in Tangshan of Hebei Province geographically and in Gaoliu structural belt of Nanpu sag in Bohai Bay Basin structurally, is one of the earliest fields put into production of Jidong oilfield. Focusing on the development problems encountered during the production of the field, this thesis establishes the fine geological reservoir model through the study of reservoir properties such as fine beds correlation, sedimentary facies, micro structures, micro reservoir architecture, flow units and fluid properties. Using routine method of reservoir engineering and technology of reservoir numerical modeling, remaining oil distribution in the target beds of Liunan area is predicted successfully, while the controling factors of remaining oil distribution are illustrated, and the model of remaining oil distribution for fault-block structure reservoirs is established. Using staged-subdivision reservoir correlation and FZI study, the Strata in Liunan Area is subdivided step by step; oil sand body data-list is recompiled; diagram databases are established; plane and section configuration of monolayer sandstone body, and combination pattern of sandstone bodys are summarized. The study of multi-level staged subdivision for sedimentary micro-facies shows that the Lower member of Minghuazhen formation and the whole Guantao formation in Liunan Area belong to meandering river and braided river sedimentary facies respectively, including 8 micro facies such as after point bar, channel bar, channel, natural levee, crevasse splay, abandoned channel, flood plain and flood basin. Fine 3D geological modeling is performed through the application of advanced software and integration of geological, seismic logging and reservoir engineering data. High resolution numerical simulation is performed with a reserve fitting error less than 3%, an average pressure fitting fluctuation range lower than 2Mpa and an accumulate water cut fitting error less than 5%. In this way, the distribution law of the target reservoir in the study area is basically recognized. Eight major remaining oil distribution models are established after analysis of production status and production features in different blocks and different layers. In addition, fuzzy mathematics method is used to the integreted evaluation and prediction of abundant remaining oil accumulation area in major production beds and key sedimentary time units of the shallow strata in Liunan Area and corresponding modification comments are put forward. In summary, the establishment of fine reservoir geological model, reservoir numerical simulation and distribution prediction of remaining oil make a sound foundation for further stimulation of oilfield development performance.
Resumo:
The reservoir of Zhongerbei region in Gudao Oilfield is a typical fluvial facies deposit, its serious heterogeneity of the reservoir caused the distribution of remaining oil in mature reservoirs is characterized by highly scattered in the whole field, and result to declination of production, tap potential and stabilize production is more difficult. Reservoir modeling based on lay scale can not fulfill requirement. How to further studied reservoir heterogeneity within the unit and establish the finer reservoir modeling is a valid approach to oil developing. The architectural structure elements analysis is the effectively method to study reservoir heterogeneity. Utilize this method, divide the reservoirs of Gudao Oilfield into ten hierarchies. The priority studying is sixth, seven hierarchies, ie single sand layers sand bodies By the identification of sixth, seven hierarchies, subdivide the reservoir to the single genetic unit. And to subdivide by many correlation means, such as isometry and phase transition, accomplish closure and correlation of 453 wells.Connectting fluvial deposit pattern, deposition characteristic with its log, build the inverting relation between “sedimentary facies” and “electrofacies” The process emphasize genetic communication and collocation structure of genetic body in space. By detailed architecture analyses sandbodies’ structure, this paper recognize seven structure elements, such as major channel, abandoned channel, natural levee, valley flat, crevasse splay, crevasse channel and floodplain fine grain.Combination identification of architectural structure elements with facieology and study of deposition characteristic, can further knowing genesis and development of abandoned channel. It boost the accuracy to separation in blanket channel bodies distribution, and provide reference to retrieving single channel boundary. Finally, establish fine plane and section construction. On basis architectural structure map, barrier beds and interbeds isopach map and mini-structure map, considering single thin layers to be construction unit, the main layer planimetric maps have drawn and the inner oil-water boundary have revealed. All account that architectural structure elements control remaining oil distribution in layer, and develop the study on architectural structure elements to direct horizontal well is succesful.
Resumo:
Shijiawan –Lijiacha area, lying on the northeastern part of the Shanbei Slope of Ordos Basin, was selected as studying area. The previous explorations proved that the 2nd segment and 6th segment of the Yanchang Formation are the most important oil-bearing formations. It is indicated that the sedimentary facies and reservoir characteristics restricted the hydrocarbon accumulation regularity. Therefore, with petrology methodologies, such as outcrop observation, core description, geophysical logging interpretation, thin section determination, scanning electron microscope, as well as rock property analysis, the reservoirs was were systematically studied and characterized. The sedimentary micro-facies, seals, reservoir-seal combines, migration pathways and entrapping modes were taken into account. The author tempted to establish a base for further studies on reservoirs and on petroleum geology, and to provide some reliably geological evidences for later prospect activities. It was found that the sediments in the 2nd and 3rd segments of the Yanchang Formation in Shijiawan –Lijiacha area were deposited in braided rivers, and most sandy-bodies were identified as channel sandbars. The 4+5th and 6th segments were principally deposited in deltaic-plain environment, consisting of corresponding sub-facies such as distributary channels, natural levee, crevasse-splay and marsh. The skeleton sandy-bodies were identified as sandy sediments of distributary channels. The sand grains in reservoir in studied area possess generally low mineralogical maturity and moderate structural maturity, and the form of pores may be classified into intergranular types and dissolved types. Most reservoirs of Yanchang Formation in Shijiawan –Lijiacha area belong to extreme low-porosity low-permeability ones (type III), and the 2nd sediments belongs to low permeability one (type II) and the 6th segment belong to super low-permeability one(type Ⅳ). The reservoirs in the 2nd segment behave more heterogeneous than those in the 6th segment. The statistic analysis results show that, for 6th and 4+5th segments, the high quality reservoir-seal combines may be found everywhere in the studied area except in the northwest and the southwest parts; and for 1st and 2nd segments, in the northeast, central and southwest parts Petroleum migration happened in the duration of the Early Cretaceous period in both lateral and vertical directions. The migration paths were mainly constructed by permeable sandy-bodies. The superimposed channel sandy-bodies consist of the principal part of the system of carriers. the vertical fractures, that may travel through the seals between reservoirs, offered the vertical paths for migrating oil. It may be synthesized that oil coming from south kitchens migrated first laterally in carriers in the 6th segment. When arrived at the studied area, oil will migration laterally or/and vertical within both the sandy-bodies and fractures, in a climbing-stair way. The results demonstrate that the oil was entrapped in traps structure-lithology and/or lithology traps. In some cases, the hydrodynamic force may help to trap oil. Accumulation of oil in the area was mainly controlled by sedimentary facies, seals, structure, and heterogeneity of reservoir in the 2nd, 4+5th and 6th segments. Especially, the oil distributions in both the 2nd and 6th segments were obviously influenced by seals in the 4+5th segment. The existence of seals in 1st segment seems important for accumulation in the 2nd segment.
Resumo:
On the basis of the character of sedimentation and reservoir researching as well as diagenesis, using conventional and update testing measures, classificati-on and evaluation of the tesla low permeability reservoir in Ordos Basin is pr-esented. From Chang 8 to Chang 4+5 oil formations, four facies developed, includi-ng alluvial fan facies, delta facies, lake facies as well as density current. They were controlled by the northeastern, the southwest, the southern and the northwestern provenances. Distributary channel underwater and mouth bar of delta fr-ont are the main reservoirs. Detrital component has the different character in s-outh and in north. Sedimentary system in the northeastern part has more felds-par and less quartz. Sedimentary system in the southern part has more quartz and less feldspar. Because of sedimentation and diagenesis, the oil formations in region of interest formed the different features of pore array of the tesla l-ow permeability reservoirs. After researching, it is found that the active porosity and the main throat radius of Chang 4+5 are the highest, and they are positive correlation with per-meability. The exponent of flowing interval falls in the sortorder: Chang 8, Chang 4+5, Chang 6, Chang 7. Using clustering procedure and quaternion, the reservoirs of Yanchang for-mation in Ordos Basin are divided into five types. Ⅰ-good reservoirs and Ⅱ-appreciably good reservoirs occur in distributary channel and mouth bar. Ⅲ-poor reservoirs and Ⅳ-poorer reservoirs exist in natural levee, crevasse splay under-water and turbidity fan. It is forecasted that the oil area in Ⅰ-good reservoirs is about 4336.68 square kilometers, and the oil area in Ⅱ-appreciably good reservoirs is 28013.28 square kilometers or so, and the oil area in Ⅲ-poor rese-rvoirs is 28538.05 square kilometers more or less.
Resumo:
Sulige gas field is located in Northwest of Yi-Shan Slope of the Ordos Basin. The Shan 1 Member of the Shanxi Formation and He8 Member of the ShiHeZi Formation are not only objective strata of research but also main producing strata of the Sulige Field. From core and wireline log data of 32 wells in well Su6 area of Sulige field, no less than six lithofaice types can be recognised. They are Gm,Sl,Sh,Sm,Sp,Fl,Fm. Box-shaped, bell-shaped, funnel-shaped and line-segment-shaped log are typcial gamma-ray log characters and shapes. The Depositonal system of the Shan1-He8 strata in research area have five bounding-surface hierarchies and was composed of six architectural elements, CH, LS,FF(CH),SB,LA,GB. The depositional model of Shan 1 was the type of a sandy meandering river with natural levee, abandoned channels and crevasse splay. Channel depth of this model maybe 7-12 m and the fullest-bank flow can reach 14 m high. Based on analysis of depositional causes, a sandy braided river model for the depositional system of He 8 can be erected. It consists of active main channels, active chute channels, sheet-like sand bars, abandoned main channels and abandoned chute channels. Channel depth of this model can be 3-4 m with 9 m of highest flow. Six gamma-ray log cross sections show that the connectivity of sandbodies through Shan 1 Member is lower than He 8. Influenced by occurrence of mudy and silty deposits, vertical connectivity of sandbodies through He 8 is not high.
Resumo:
In order to developing reservoir of Upper of Ng at high-speed and high-efficient in Chengdao oilfield which is located in the bally shallow sea, the paper builds up a series of theory and means predicting and descripting reservoir in earlier period of oilfield development. There are some conclusions as follows. 1. It is the first time to form a series of technique of fine geological modeling of the channel-sandy reservoir by means of mainly seismic methods. These technique include the logging restriction seismic inversion, the whole three dimension seismic interpretation, seismic properties analysis and so on which are used to the 3-dimension distributing prediction of sandy body, structure and properties of the channel reservoir by a lot of the seismic information and a small quantity of the drilling and the logging information in the earlier stage of the oil-field development. It is the first time that these methods applied to production and the high-speed development of the shallow sea oilfield. The prediction sandy body was modified by the data of new drilling, the new reservoir prediction thinking of traced inversion is built. The applied effect of the technique was very well, according to approximately 200 wells belonging to 30 well groups in Chengdao oilfield, the drilling succeeded rate of the predicting sandy body reached 100%, the error total thickness only was 8%. 2. The author advanced the thinking and methods of the forecasting residual-oil prediction at the earlier stage of production. Based on well data and seismic data, correlation of sediment units was correlated by cycle-correlation and classification control methods, and the normalization and finely interpretation of the well logging and sedimentation micro-facies were acquired. On the region of poor well, using the logging restriction inversion technique and regarding finished drilling production well as the new restriction condition, the sand body distributing and its property were predicted again and derived 3-dimension pool geologic model including structure, reservoir, fluid, reservoir engineering parameter and producing dynamic etc. According to the reservoir geologic model, the reservoir engineering design was optimized, the tracking simulation of the reservoir numerical simulation was done by means of the dynamic data (pressure, yield and water content) of development well, the production rule and oil-water distributing rule was traced, the distributing of the remaining oil was predicted and controlled. The dynamic reservoir modeling method in metaphase of development was taken out. Based on the new drilling data, the static reservoir geologic model was momentarily modified, the research of the flow units was brought up including identifying flow units, evaluating flow units capability and establishing the fine flow units model; according to the dynamic data of production and well testing data, the dynamic tracing reservoir description was realized through the constant modification of the reservoir geologic model restricted these dynamic data by the theory of well testing and the reservoir numerical simulation. It was built the dynamic tracing reservoir model, which was used to track survey of the remaining oil on earlier period. The reservoir engineering tracking analysis technique on shallow sea oilfield was founded. After renewing the structure history since tertiary in Chengdao area by the balance section technique and estimating the activity character of the Chengbei fault by the sealing fault analysis technique, the meandering stream sediment pattern of the Upper of Ng was founded in which the meandering border was the uppermost reservoir unit. Based on the specialty of the lower rock component maturity and the structure maturity, the author founded 3 kinds of pore structure pattern in the Guanshang member of Chengdao oil-field in which the storing space mainly was primary (genetic) inter-granular pore, little was secondary solution pore and the inter-crystal pore tiny pore, and the type of throat mainly distributed as the slice shape and the contract neck shape. The positive rhythmic was briefly type included the simple positive rhythm, the complex positive rhythm and the compound rhythm. Interbed mainly is mudstone widely, the physical properties and the calcite interbed distribute localized. 5. The author synthetically analyzed the influence action of the micro-heterogeneity, the macro-heterogeneity and the structure heterogeneity to the oilfield water flood development. The efficiency of water flood is well in tiny structure of convex type or even type at top and bottom in which the water breakthrough of oil well is soon at the high part of structure when inject at the low part of structure, and the efficiency of water flood is poor in tiny structure of concave type at top and bottom. The remaining oil was controlled by sedimentary facies; the water flooding efficiency is well in the border or channel bar and is bad in the floodplain or the levee. The separation and inter layer have a little influence to the non-obvious positive rhythm reservoir, in which the remaining oil commonly locate within the 1-3 meter of the lower part of the separation and inter layer with lower water flooding efficiency.
Resumo:
The Gangxi oil field has reached a stage of high water production. The reservoir parameters, such as reservoir physical characteristics, pore structure, fluid, have obviously changed. This thesis therefore carries out a study of these parameters that control reservoir characteristics, physical and chemical actions that have taken place within the reservoirs due to fluid injection, subsequent variations of reservoir macroscopic physical features, microscopic pore structures, seepages, and formation fluid properties. This study rebuilds a geologic model for this oil field, establishes a log-interpreting model, proposes a methodology for dealing with large pore channels and remnant oil distribution, and offers a basis for effective excavation of potential oil, recovery planning, and improvement of water-injection techniques. To resolve some concurrent key problems in the process of exploration of the Gangxi area, this thesis carries out a multidisciplinary research into reservoir geology, physical geography, reservoir engineering, and oil-water well testing. Taking sandstone and flow unit as objects, this study establishes a fine geologic model by a quantificational or semi-quantificational approach in order to understand the remnant oil distribution and the reservoir potential, and accordingly proposes a plan for further exploration. By rebuilding a geological model and applying reservoir-engineering methods, such as numerical simulation, this thesis studies the oil-water movement patterns and remnant-oil distribution, and further advances a deployment plan for the necessary adjustments and increase of recoverable reserves. Main achievements of this study are as follows: 1. The Minghazhen Formation in the Gangxi area is featured by medium-sinuosity river deposits, manifesting themselves as a transitional type between typical meandering and braided rivers. The main microfacies are products of main and branch channels, levee, inter-channel overflows and crevasse-splay floodplains. The Guantao Group is dominantly braided river deposit, and microfacies are mainly formed in channel bar, braided channel and overbank. Main lithofacies include conglomerate, sandstone, siltstone and shale, with sandstone facies being the principal type of the reservoir. 2. The reservoir flow unit of the Gangxi area can be divided into three types: Type I is a high-quality heterogeneous seepage unit, mainly distributed in main channel; Type II is a moderate-quality semi-heterogeneous seepage unit, mainly distributed in both main and branch channels, and partly seen within inter-channel overflow microfacies; Type III is a low-quality, relatively strong heterogeneous seepage unit, mainly distributed in inter-channel overflow microfacies and channel flanks. 3. Flow units and sedimentary microfacies have exerted relatively strong controls on the flowing of underground oil-water: (1) injection-production is often effective in the float units of Type I and II, whilst in the same group of injection-production wells, impellent velocity depends on flow unit types and injection-production spacing; (2) The injection-production of Type III flow unit between the injection-production wells of Type I and II flow units, however, are little effective; (3) there can form a seepage shield in composite channels between channels, leading to inefficient injection and production. 4. Mainly types of large-scale remnant-oil distribution are as follows: (1) remnant oil reservoir of Type III flow unit; (2) injection-production well group of remnant oil area of Type III flow unit; (3) remnant oil reservoirs that cannot be controlled by well network, including reservoir featured by injection without production, reservoir characterized by production without injection, and oil reservoir at which no well can arrive; (4) remnant oil area where injection-production system is not complete. 5. Utilizing different methods to deal with different sedimentary types, sub-dividing the columns of up to 900 wells into 76 chronostratigraphic units. Four transitional sandstone types are recognized, and contrast modes of different sandstone facies are summarized Analyzing in details the reservoirs of different quality by deciphering densely spaced well patterns, dividing microscopic facies and flow units, analyzing remnant oil distribution and its effect on injection-production pattern, and the heterogeneity. Theory foundation is therefore provided for further excavation of remnant oil. Re-evaluating well-log data. The understanding of water-flood layers and conductive formations in the Gangxi area have been considerably improved, and the original interpretations of 233 wells have changed by means of double checking. Variations of the reservoirs and the fluid and formation pressures after water injection are analyzed and summarized Studies are carried out of close elements of the reservoirs, fine reservoir types, oil-water distribution patterns, as well as factors controlling oil-gas enrichment. A static geological model and a prediction model of important tracts are established. Remaining recoverable reserves are calculated of all the oil wells and oil-sandstones. It is proposed that injection-production patterns of 348 oil-sandstones should be adjusted according to the analysis of adaptability of all kinds of sandstones in the injection-production wells.