39 resultados para length diameter ratio

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

常绿阔叶林以其富饶的生物资源、丰富的生物多样性和巨大的生态与环境效益引起了人们越来越大的重视,它的研究已成为国际植被科学界关注的主题之一。我国分布着世界上面积最大的亚热带常绿阔叶林,在世界植被中具有重要地位,它的分布表现出明显的地带性差异,存在着多样的植物群系及其对应的气候特征。但是在植物功能性状领域,与全球范围其它生物群系相比,常绿阔叶林物种的研究较少,其功能性状间、功能性状与环境间的关系尚不清晰。 本研究以常绿阔叶林木本植物的当年生小枝为对象,试图从小枝水平上的生物量分配格局、叶片大小与数量的权衡关系、小枝茎的构型效应、叶片元素化学计量学,以及小枝大小的成本与效益分析等方面,较为系统地揭示小枝水平上的植物功能性状间及其与气候间的关系。因此,在华西雨屏带内部的不同纬度设置峨眉-青城-雷波-平武的温度梯度进行比较,并对有降水差异的川西南偏湿性(雷波)与偏干性常绿阔叶林(西昌)进行对比研究,同时在不同山体进行不同海拔梯度的比较研究。 本文主要研究结果如下: (1)小枝生物量分配格局叶水平上,叶片重-叶柄重(Y轴vs.X轴,下同)呈斜率小于1的异速生长关系,表明叶柄对叶内部的生物量分配影响显著。小枝水平上,叶和茎的生物量以及它们与小枝总生物量间基本呈等速生长关系,表明大的小枝或大叶物种不一定在叶生物量的分配上占优势。不同生活型间,在小枝或者茎的生物量一定时,常绿物种叶片的生物量比例较落叶物种稍高。与温度和水分较优越(峨眉及其低海拔)的生境相比,在相对低湿(螺髻)与低温(平武)的生境中的植物会减少对叶的投入而增加对支撑部分的投资比例。 (2)小枝叶片大小与数量的权衡无论是不同气候带还是不同生活型以及不同海拔梯度,叶片大小与出叶强度基本都是呈负的等速生长关系,表明了叶片大小-数量在小枝水平上的权衡。在不同气候梯度的对比中,叶片数量(出叶强度)一定时,高温和高水分生境(峨眉)比低温(平武)和低湿(螺髻山)生境中的物种的叶片大小(质量和面积)更大,表明不同生境的比较中,小的叶片可能具有较高的出叶强度和更高的适合度收益。“出叶强度优势”(Leafingintensitypremium)假说可能不适宜解释不同生境物种叶片大小差异。 (3)小枝茎的构型效应虽然茎长和茎径与叶片大小都呈正相关关系,与出叶强度都呈负相关关系,但茎长/茎径比与叶/茎生物量之比呈负相关关系;与叶片的大小呈负相关关系,与出叶强度呈正相关关系。这说明小枝构型能影响小枝叶/茎生物量分配和叶大小-数量的权衡关系。其影响机制可能是小枝内部的顶端优势。另外,茎长/茎径比在低湿和低温等不利生境中的植物中较高,而在降水和温度较适宜环境中较低。 (4)叶片C、N、P化学计量学N含量和P含量,C/N比和比叶重(LMA,leafmassperarea)呈正的等速生长关系,而N和LMA,P和LMA呈负的等速生长关系。在LMA一定时,C/N比随着生境胁迫压力的增加而降低,N、P含量随着生境压力的增加而增加。在P含量一定时,N含量随着生境压力的增加而降低,即N/P比在生境条件较优(峨眉及其低海拔)时较高。常绿和落叶植物叶片的N/P比没有差异,在LMA一定时,常绿植物的N、P含量较高、C/N比较低。总之,植物的C、N、P化学计量学特征受叶片属性如LMA与气候,及其相互作用的影响。 (5)小枝大小的代价与效益分析、TLA与小枝总重总叶面积(TLA,totalleafarea,Y轴,下同)与总叶重(X轴)均呈斜率小于1的异速生长关系,TLA与小枝横切面积呈斜率为1的等速生长关系。表明叶片面积的增加总是小于叶重和小枝总重的增加,随着小枝的增大,它的叶面积支撑效率下降。在热量和降水优越的生境(峨眉及其低海拔)中,相同小枝重或者相同茎横切面积的小枝,其叶面积支撑效率较低湿与低温环境下(螺髻山、平武及高海拔)的高。 总体上,本文初步研究了小枝水平上可能存在的以下三种权衡关系:叶-茎生物量分配权衡;叶片大小-数量的权衡;小枝茎长-茎径的权衡关系,以及气候要素等对这三种权衡关系的影响。在此基础上,我们还讨论了这些权衡关系的可能形成机制,及其与物种生态适应的联系。本研究丰富了生活史对策中关于权衡关系的研究内容,为我国常绿阔叶林功能生态学研究积累了材料。 Evergreen broad-leaved forests are attracting much more attention from vegetation ecologists than ever before because of their abundant nature resource and biological diversity, and also great ecological benefits. China has the largest distribution of subtropical evergreen broad-leaved forests (temperate rainforests) that are typical and representative in the world. The forests span over more than ten degrees in latitude and more than 30 degrees in longitude, providing an ideal place to study plant functional ecology, i.e., the climatic effect on plant functional traits and the relationship between the traits. However, relative to the other biomes, there are few studies addressing functional ecology of the plant species from subtropical evergreen broad-leaved forests. In this study, I focused on the leaf size-twig size spectrum of the woody species of subtropical evergreen broad-leaved forests in southwestern china. I collected data on leaf size and number, twig size in terms of both mass and volume, and stem architecture from five temperate mountains, and then I analyzed the relationships between leaf and stem biomass and between leaf size and number, the effect of stem length/diameter ratio on biomass allocation and on the relationship between leaf size and number, leaf C:N:P stoichiometry, and the twig efficiency of supporting leaf area in relation to twig size. I also addressed the climate effect on the spectrum. The temperature gradient from warm to cool sites was represented by Emei Mountain, Qingchengshan, Leibo, and Pingwu, and the rainfall gradient was assumed to emerge from the comparison between Leibo (High) and Luojishan (Low). In addition, altitudinal effects were analyzed with comparisons between low and high altitudes for each mountains. My main results are as follows. Isometric relationships were found between leaf mass and twig mass and between lamina mass and twig mass, suggesting that the biomass allocation to leaves or laminas was independent of twig mass. Petiole mass disproportionably increase with respect to lamina mass and twig mass, indicating the importance of leaf petioles to the within-twig biomass allocation. In addition, the investigated species tended to have a larger leaf and lamina mass, but a smaller stem mass at a given twig mass at favorable environments including warm and humid sites or at low altitude than unfavorable habitats, which might be due to the large requirements in physical support and transporting safety for the species living at unfavorable conditions. Moreover, the evergreen species invested more in leaves and laminas than the deciduous at given stem or twig biomass within any specified habitats. Negative, isometric scaling relationships between leaf number and size broadly existed in the species regardless of climate, altitude, and life forms, suggesting a leaf size/number trade-off within twigs. Along the climatic gradients, at given leaf number or leafing intensity, the leaves were larger in the favorable environments than the poor habitats. This suggested that the fitness benefit gained by small leaves could be larger than that with high leafing intensity in the stressful sites. I concluded that the “leafing intensity premium” hypothesis was not appropriate to interpreting between-habitat variation in leaf size. Both stem length and diameter were positively correlated to leaf size but negatively correlated to leafing intensity. The ratio of stem length to diameter was negatively correlated to leaf mass fraction, and it was negatively correlated to leaf size but positively correlated to leafing intensity. This suggested that the stem architecture influenced twig biomass allocation and the relationship between leaf size and number. The mechanism underlying the architectural effect might lie in the apical dominance within twig. Moreover, the ratio was greater in unfavorable habitats but smaller in favorable environments. Positive, isometric relationships were found between N and P contents per leaf mass, and between C/N ratio and leaf mass per area (LMA), but N and P contents scaled negatively to LMA. C/N ratio decreased but N and P increased with increasing habitat stress at a given LMA. N content declined with increasing habitat stress at given P content. These indicated that N/P and C/N were higher but LMA was lower in favorable habitats than in the other circumstances. The evergreen and deciduous species were non-heterogeneous in N/P, but the evergreen species have higher N and P contents and lower C/N than the deciduous ones. In general, C:N:P stoichiometry were related to both climatic conditions and other important functional traits like LMA. Total leaf area (TLA) allometricly scaled to leaf mass with a slope shallower than 1, similar to the relationship between TLA and total twig mass (leaf mass plus stem mass), suggesting that TLA failed to keep pace with the increase of leaf mass and twig size. However, TLA scaled isometricly to twig cross-sectional area. Thus, it could be inferred that the twig efficiency of displaying leaf area decreased with increasing twig size. In addition, the efficiency at a given twig size was large in favorable than unfavorable habitats. In general, in this preliminary study, I studied three tradeoff relationships within twigs, i.e., between leaf and stem biomass, between leaf number and size, and between stem length and diameter, as well as the climatic effect on the relationships. I discussed the mechanisms underlying the tradeoff relationships in view of biophysics and eco-physiology of plants. I believe that this study can serve as important materials advancing plant functional ecology of subtropical forest and that it will improve the understanding of life history strategies of plants from this particular biome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gold nanowires with diameters (d) between,15 run and 200 urn and with length/diameter ratio of 700 were prepared in ion-track templates with electrode position method. The morphology and crystal structure of the gold nanowires were Studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The 200 nm (d) gold nanowires preferred orientation along the [100] direction were formed at the deposition voltage of 1.5 V (Without reference electrode). The optical properties of gold nanowire arrays embedded in ion-track templates were studied by UV-Vis spectrophotometer. There was a strong absorption peak at 539 nm for 45 nm (d) gold nanowire arrays. With the diameter of gold nanowires increasing, the absorption peak shifted to the longer wavelength. At last, the result was discussed combined with surface plasmon resonance of gold nanoparticles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gas transport of H-2, CO2, O-2, N-2, and CH4 in a series of cardo polyarylethers were examined over a temperature range of 30 similar to 100 degreesC. These polymers include three poly(aryletherketone)s, two poly(arylethersulfone)s, and one poly(aryletherketoneketone). It was found that the large length/diameter ratio of the polymer repeat unit for cardo polyaryletherketoneketone (PEKK-C) and strong intermolecular interaction in hydrogen-bonded polyarylethersulfone (PES-H) and hydrogen-bonded polyaryletherketone (PEK-H) resulted in a considerable increase in gas permselectivity. Alkyl-substituted polyaryletherketone (PEK-A), bearing a pendant bulky propyl group on the cardo ring, simultaneously exhibited 62.5% higher H-2 permeability and 59.8% higher H-2/N-2 permselectivity than unmodified poly(aryletherketone) (PEK-C). The causes of the trend were interpreted in terms of chain packing density, segmental motion ability, steric factor, and intermolecular interaction of polymers, together with gas kinetic diameter and critical temperature data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nanoscale and microscale fibrillar crystals of nylon 10 10 were obtained by atomizing the very dilute formic acid solution. The length-diameter ratio of these fibrillar crystals increases as the concentration of the atomizing solution increases. Electron diffraction (ED) analysis showed that the hydrogen-bonded sheet in these solution-grown fibrillar crystals was imperfect and had a lower order. Both electron diffraction and characteristic morphology show that melt-crystallized fibrillar crystals always possess perfect packing order and stable structure. A rather perfect ED pattern of the triclinic form of nylon 10 10 along the [001] zone was obtained by tilting the specimen 41 degrees along the elongated direction of the crystal. Fibrillar crystals from bulk have a great tendency to aggregate with parallel packing to form crystal clusters, which look like shish kebabs in morphology. Spherulite is observed occasionally in the domains with very rich sample. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Superfine mineral materials are mainly resulted from the pulverization of natural mineral resources, and are a type of new materials that can replace traditional materials and enjoy the most extensive application and the highest degree of consumption in the present day market. As a result, superfine mineral materials have a very broad and promising prospect in terms of market potential. Superfine pulverization technology is the only way for the in-depth processing of most of the traditional materials, and is also one of the major means for which mineral materials can realize their application. China is rich in natural resources such as heavy calcite, kaolin, wollastonite, etc., which enjoy a very wide market of application in paper making, rubber, plastics, painting, coating, medicine, environment-friendly recycle paper and fine chemical industries, for example. However, because the processing of these resources is generally at the low level, economic benefit and scale for the processing of these resources have not been realized to their full potential even up to now. Big difference in product indices and superfine processing equipment and technologies between China and advanced western countries still exists. Based on resource assessment and market potential analysis, an in-depth study was carried out in this paper about the superfine pulverization technology and superfine pulverized mineral materials from the point of mineralogical features, determination of processing technologies, analytical methods and applications, by utilizing a variety of modern analytical methods in mineralogy, superfine pulverization technology, macromolecular chemistry, material science and physical chemistry together with computer technology and so on. The focus was placed on the innovative study about the in-depth processing technology and the processing apparatus for kaolin and heavy calcite as well as the application of superfine products. The main contents and the major achievements of this study are listed as follows: 1. Superfine pulverization processing of mineral materials shall be integrated with the study of their crystal structures and chemical composition. And special attention shall be put on the post-processing technologies, rather than on the indices for particle size, of these materials, based on their fields of application. Both technical feasibility and economic feasibility shall be taken into account for the study about superfine pulverization technologies, since these two kinds of feasibilities serve as the premise for the industrialized application of superfine pulverized mineral materials. Based on this principle, preposed chemical treatment method, technology of synchronized superfine pulverization and gradation, processing technology and apparatus of integrated modification and depolymerization were utilized in this study, and narrow distribution in terms of particle size, good dispersibility, good application effects, low consumption as well as high effectiveness of superfine products were achieved in this study. Heavy calcite and kaolin are two kinds of superfine mineral materials that enjoy the highest consumption in the industry. Heavy calcite is mainly applied in paper making, coating and plastics industries, the hard kaolin in northern China is mainly used in macromolecular materials and chemical industries, while the soft kaolin in southern China is mainly used for paper making. On the other hand, superfine pulverized heavy calcite and kaolin can both be used as the functional additives to cement, a kind of material that enjoys the biggest consumption in the world. A variety of analytical methods and instruments such as transmission and scanning electron microscopy, X-ray diffraction analysis, infrared analysis, laser particle size analysis and so on were applied for the elucidation of the properties and the mechanisms for the functions of superfine mineral materials as used in plastics and high-performance cement. Detection of superfine mineral materials is closely related to the post-processing and application of these materials. Traditional detection and analytical methods for superfine mineral materials include optical microscopy, infrared spectral analysis and a series of microbeam techniques such as transmission and scanning electron microscopy, X-ray diffraction analysis, and so on. In addition to these traditional methods, super-weak luminescent photon detection technology of high precision, high sensitivity and high signal to noise ratio was also utilized by the author for the first time in the study of superfine mineral materials, in an attempt to explore a completely new method and means for the study of the characterization of superfine materials. The experimental results are really exciting! The innovation of this study is represented in the following aspects: 1. In this study, preposed chemical treatment method, technology of synchronized superfine pulverization and gradation, processing technology and apparatus of integrated modification and depolymerization were utilized in an innovative way, and narrow distribution in terms of particle size, good dispersibility, good application effects, low consumption as well as high effectiveness of superfine products were achieved in the industrialized production process*. Moreover, a new modification technology and related directions for producing the chemicals were invented, and the modification technology was even awarded a patent. 2. The detection technology of super-weak luminescent photon of high precision, high sensitivity and high signal to noise ratio was utilized for the first time in this study to explore the superfine mineral materials, and the experimental results can be compared with those acquired with scanning electron microscopy and has demonstrated its unique advantages. It can be expected that further study may possibly help to result in a completely new method and means for the characterization of superfine materials. 3. During the heating of kaolinite and its decomposition into pianlinite, the diffraction peaks disappear gradually. First comes the disappearance of the reflection of the basal plane (001), and then comes the slow disappearance of the (hkl) diffraction peaks. And this was first discovered during the experiments by the author, and it has never before reported by other scholars. 4. The first discovery of the functions that superfine mineral materials can be used as dispersants in plastics, and the first discovery of the comprehensive functions that superfine mineral materials can also be used as activators, water-reducing agents and aggregates in high-performance cement were made in this study, together with a detailed discussion. This study was jointly supported by two key grants from Guangdong Province for Scientific and Technological Research in the 10th Five-year Plan Period (1,200,000 yuan for Preparation technology, apparatus and post-processing research by using sub-micron superfine pulverization machinery method, and 300,000 yuan for Method and instruments for biological photon technology in the characterization of nanometer materials), and two grants from Guangdong Province for 100 projects for scientific and technological innovation (700,000 yuan for Pilot experimentation of superfine and modified heavy calcite used in paper-making, rubber and plastics industry, and 400,000 yuan for Study of superfine, modified wollastonite of large length-to-diameter ratio).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The scour of the seabed under a pipeline is studied experimentally in this paper. Tests are carried out in a U-shaped oscillatory water tunnel with a box imbedded in the bottom of the test section. By use of the standard sand, clay and plastic grain as the seabed material, the influence of the bed material on the scour is studied. The relationship between the critical initial gap-to-diameter ratio above which no scour occurs and the parameters of the oscillating flow is obtained. The self-burial phenomenon. which occurs for the pipeline not fixed to two sidewalls of the test section, is not observed for the Bred pipeline. The effect of the pipe on sand wave formation is discussed. The maximum equilibrium scour depths For different initial gap-to-diameter ratios, different Kc numbers and different bed sands are also given in this paper.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Unlike most previous studies on vortex- induced vibrations of a cylinder far from a boundary, this paper focuses On the influences of close proximity of a submarine pipeline to a rigid seabed boundary upon the dynamic responses of the pipeline in ocean currents. The effects of gap-to-diameter ratio and those of the stability parameter on the amplitude and frequency responses of a pipeline are investigated experimentally with a novel hydro-elastic facility. A comparison is made between the present experimental results Of the amplitude and frequency responses for the pipes with seabed boundary effects and those for wall-free cylinders given by Govardhan and Williamson (2000) and Anand ( 1985). The comparison shows that the close proximity of a pipeline to seabed has much influence on the vortex- induced vibrations of the pipeline. Both the width of the lock-in ranges in terms of V, and the dimensionless amplitude ratio A(max)/D become larger with the decrease of the gap-to-diameter ratio e/D. Moreover, the vibration of the pipeline becomes easier to occur and its amplitude response becomes more intensive with the decrease of the stability parameter, while the pipeline frequency responses are affected slightly by the stability parameter.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Most of the existing researches either focus on vortex-induced vibrations (VIVs) of a pipeline near a rigid boundary, or on seabed scour around a fixed pipeline. In this study, the coupling effects between pipeline vibration and sand scour are investigated experimentally. Experimental results indicate that there often exist two phases in the process of sand scouring around the pipeline with an initial embedment, i.e. Phase I: scour beneath pipe without VIV, and Phase II: scour with VIV of pipe. During Phase II, the amplitude of pipe vibration gets larger and its frequency gets smaller while the sand beneath the pipe is being scoured, and finally the pipe vibration and sand scour get into an equilibrium state. This indicates that sand scouring has an influence upon not only the amplitude of pipe vibration but also its frequency. Moreover, the equilibrium scour depth decreases with increasing initial gap-to-diameter ratio for both the fixed pipes and vibrating pipes. For a given value of initial gapto- diameter ratio (e0/D), the vibrating pipe may induce a deeper scour hole than the fixed pipe in the examined range of initial gap-to-diameter ratios (−0.25 < e0/D < 0.75).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Based on similarity analyses, the flow-induced vibrations of a near-wall cylinder with 2 degrees of freedom are investigated experimentally by employing a hydroelastic apparatus in conjunction with a flume. The cylinder's vibration amplitude, vibration frequency and vortex shedding frequency were measured and analyzed. The effects of gap-to-diameter ratio (e,ID) upon the vibration responses are further investigated. The experimental results indicate that, when the reduced velocity (Vr) is small (e.g. Vr = 1.2 similar to 2.6), only streamwise vibration occurs, and its frequency is quite close to its natural frequency in still water. When increasing Vr (e.g. Vr > 3.4), both streamwise and transverse vibrations of the near-wall cylinder may occur. In the examined range of gap-to-diameter ratio (0.42 < e(0)/D < 2.68), 2 vibration stages (in terms of Vr) of streamwise vibrations usually exist: First Streamwise Vibration (FSV) and Second Streamwise Vibration (SSV). In the SSV stage, the vortex shedding frequency may either undergo a jump to that of the streamwise vibration, or stay consistent with that of the transverse vibration. The amplitudes of transverse vibration are usually much larger than those of streamwise vibration for the same value of e(0)/D. The maximum amplitudes of both streamwise and transverse vibration get larger with the increase of e(0)/D (0.42 < e(0)/D < 2.68).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Based on similarity analyses, a series of experiments have been conducted with a newly established hydro-elastic facility to investigate the transverse vortex-induced vibrations (VIVs) of a submarine pipeline near an erodible sandy seabed under the influence of ocean currents. Typical characteristics of coupling processes between pipe vibration and soil scour in the currents have been summarized for Case 1: pipe is laid above seabed and Case 11: pipe is partially embedded in seabed on the basis of the experimental observations. Pipe vibration and the corresponding local scour are usually two coupled physical processes leading to an equilibrium state. The influence of initial gap-to-diameter ratio (e(0)/D) on the interaction between pipe vibration and local scour has been studied. Experimental results show that the critical values of V-r for the initiation of VIVs of the pipe near an erodible sand bed get bigger with decreasing initial gap-to-diameter ratio within the examined range of e(0)/D (-0.25 < e(0)/D < 0.75). The comparison of the pipe vibrations near an erodible soil with those near a rigid boundary and under wall-free conditions indicates that the vibration amplitudes of the pipe near an erodible sand bed are close to the curve fit under wall-free conditions; nevertheless, for the same stability parameter, the maximum amplitudes for the VIV coupled with local scour increase with the increase of initial gap-to-diameter ratio. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Most of the existing researches either focus on vortex-induced-vibrations (VIV) of a pipeline near a rigid boundary, or on seabed scour around a fixed pipeline. In the fields, pipeline vibration and seabed scour are actually always coupled. Based on the similarity analysis, a series of tests were conducted with a hydro-elastic facility to investigate the influence of pipe vibration on the local scour and the effects of scour process on the pipeline dynamic responses. Experimental results indicate that, there exist two phases in the process of sand scouring around the pipeline with small embedment, i.e. Phase I: scour beneath pipe without VIV, and Phase II: scour with VIV of pipe. It is also found that the gap-to-diameter ratio (e/D) has much effect upon the scour depth for the fixed pipes. For a given value of e/D, the vibrating pipes with close proximity to seabed may induce a deeper scour hole than the fixed ones. Within the examined gap-to-diameter ratio range (425 < e/D < 0.75), the influences of gap-to-diameter ratio on the maximum values of scour-depth for the case of vibrating pipes are not as much as those for the case of fixed pipes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The flow-induced vibration of a cylinder with two degrees of freedom near a rigid wall under the action of steady flow is investigated experimentally. The vibration amplitude and frequency of the cylinder and the vortex shedding frequency at the wake flow region of the cylinder are measured. The influence of gap-to-diameter ratio upon the amplitude response is analyzed. The experimental results indicate that when the reduced velocity (Vr) is in the range of 1.2 < Vr < 2.6, only streamwise vibration with small amplitude occurs, whose frequency is quite close to its natural frequency in the still water. When the reduced velocity Vr > 3.4, both the streamwise and transverse vibrations of the cylinder occur. In this range, the amplitudes of transverse vibration are much larger than those of streamwise vibrations, and the amplitudes of the streamwise vibration also get larger than those at the range of 1.2 < Vr < 2.6. At the range of Vr > 3.4, the frequency of streamwise vibration undergoes a jump at certain values of Vr, at which the streamwise vibrating frequency is twice as much as the transverse one. However, when the streamwise vibration does not experience a jump, its frequency is the same as that of the transverse vibration. The maximum values of second streamwise and transverse vibration amplitudes increase with increasing gap-to-diameter ratios.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Unlike most previous studies on the transverse vortex-induced vibration(VIV) of a cylinder mainly under the wallfree condition (Williamson & Govardhan,2004),this paper experimentally investigates the vortex-induced vibration of a cylinder with two degrees of freedom near a rigid wall exposed to steady flow.The amplitude and frequency responses of the cylinder are discussed.The lee wake flow patterns of the cylinder undergoing VIV were visualized by employing the hydrogen bubble technique.The effects of the gap-to-diameter ratio (e0/D) and the mass ratio on the vibration amplitude and frequency are analyzed.Comparisons of VIV response of the cylinder are made between one degree (only transverse) and two degrees of freedom (streamwise and transverse) and those between the present study and previous ones.The experimental observation indicates that there are two types of streamwise vibration,i.e.the first streamwise vibration (FSV) with small amplitude and the second streamwise vibration (SSV) which coexists with transverse vibration.The vortex shedding pattem for the FSV is approximately symmetric and that for the SSV is alternate.The first streamwise vibration tends to disappear with the decrease of e0/D.For the case of large gap-to-diameter ratios (e.g.e0/D = 0.54~1.58),the maximum amplitudes of the second streamwise vibration and transverse one increase with the increasing gapto-diameter ratio.But for the case of small gap-to-diameter ratios (e.g.e0/D = 0.16,0.23),the vibration amplitude of the cylinder increases slowly at the initial stage (i.e.at small reduced velocity V,),and across the maximum amplitude it decreases quickly at the last stage (i.e.at large Vr).Within the range ofthe examined small mass ratio (m<4),both streamwise and transverse vibration amplitude of the cylinder decrease with the increase of mass ratio for the fixed value of V,.The vibration range (in terms of Vr ) tends to widen with the decrease of the mass ratio.In the second streamwise vibration region,the vibration frequency of the cylinder with a small mass ratio (e.g.mx = 1.44) undergoes a jump at a certain Vr,.The maximum amplitudes of the transverse vibration for two-degree-of-freedom case is larger than that for one-degree-of-freedom case,but the transverse vibration frequency of the cylinder with two degrees of freedom is lower than that with one degree of freedom (transverse).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study, the vortex-induced vibrations of a cylinder near a rigid plane boundary in a steady flow are studied experimentally. The phenomenon of vortex-induced vibrations of the cylinder near the rigid plane boundary is reproduced in the flume. The vortex shedding frequency and mode are also measured by the methods of hot film velocimeter and hydrogen bubbles. A parametric study is carried out to investigate the influences of reduced velocity, gap-to-diameter ratio, stability parameter and mass ratio on the amplitude and frequency responses of the cylinder. Experimental results indicate: (1) the Strouhal number (St) is around 0.2 for the stationary cylinder near a plane boundary in the sub-critical flow regime; (2) with increasing gap-to-diameter ratio (e (0)/D), the amplitude ratio (A/D) gets larger but frequency ratio (f/f (n) ) has a slight variation for the case of larger values of e (0)/D (e (0)/D > 0.66 in this study); (3) there is a clear difference of amplitude and frequency responses of the cylinder between the larger gap-to-diameter ratios (e (0)/D > 0.66) and the smaller ones (e (0)/D < 0.3); (4) the vibration of the cylinder is easier to occur and the range of vibration in terms of V (r) number becomes more extensive with decrease of the stability parameter, but the frequency response is affected slightly by the stability parameter; (5) with decreasing mass ratio, the width of the lock-in ranges in terms of V (r) and the frequency ratio (f/f (n) ) become larger.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

从波动理论出发,对锥形光纤的纵向传播常数进行泰勒(Taylor)级数展开,经近似得到了锥形光纤功率分布的解。基于此理论,对锥形光纤的功率分布特性进行了讨论,并分析了锥形光纤的长度、锥度和光纤折射率等参数对锥形光纤不同模式功率分布的影响。为了减小功率泄漏,当光从锥形光纤大端入射时,应当减小锥长,减小锥度,增大纤芯包层折射率差;当光从锥形光纤小端入射时,应当增加锥长,增加锥度,增大纤芯包层折射率差。在长锥长、大锥度情况下,光纤折射率分布的影响相对较小。