25 resultados para landslides
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The slide of unstable sedimentary bodies and their hydraulic effects are studied by numerical means. A two-dimensional fluid mechanics model based on Navier-Stokes equations has been developed considering the sediments and water as a mixture. Viscoplastic and diffusion laws for the sediments have been introduced into the model. The numerical model is validated with an analytical solution for a Bingham flow. Laboratory experiments consisting in the slide of gravel mass have been carried out. The results of these experiments have shown the importance of the sediment rheology and the diffusion. The model parameters are adjusted by trial and error to match the observed “sandflow”.
Resumo:
以往对滑坡体中软弱层与滑带的识别主要依赖十钻孔并辅之以工程师的经验。采用在钻孔中进行爆破的方法,通过对地表接收信号的波形分析即可十分方便地识别出软弱层与滑带。简耍阐述了该方法的理论依据,通过对现场爆破实验测量信号的分析可以发现,该方法可以减少钻孔数量以及提高滑带识别的精度与效率。
Resumo:
A slope failure is developed due to progressive external loads and deteriorations of slope geomaterials, thus forming a progressive and dynamic development and occurrence of landslides. Site geological properties and other active factors such as hydrodynamic load and human activities are complex and usually unknown, thus this dynamic development and occurrence of landslides can only be understood through the progressive accumulation of knowledge on the landslides. For such a progressive process, this paper proposes a dynamic comprehensive control method for landslide control. This control method takes full advantage of updated monitoring data and site investigations of landslides, and emphasizes the implementation of possible measures for landslide control at reasonable stages and in different groups. These measures are to prevent the occurrence of a landslide disaster. As a case study, a landslide project at the Panluo open-pit iron mine is analyzed to illustrate this dynamic comprehensive control method.
Resumo:
Slip-weakening is one of the characteristics of geological materials under certain loadings. Non-uniform rock structure may exist in the vicinity of the slip surface for a rock slope. Some portion of the slip surface may be penetrated but the other not. For the latter case, the crack or the fault surface will undergo shear deformation before it becomes a successive surface under a certain loading. As the slipped portion advances,slip-weakening occurs over a distance behind the crack tip. In the weakening zone, the shear strength will decrease from its peak value to residual friction level. The stress will redistribute along the surface of crack and in the weakening zone. Thus the changed local stress concentration leads the crack to extend and the ratio of penetration of the slip surface to increase. From the view of large-scale for the whole slip surface, the shear strength will decrease due to the damage of interior rock structure, and the faulted rock behaves as a softening material. Such a kind of mechanism performs in a large number of practical landslides in the zones experienced strong earthquakes. It should be noted that the mechanism mentioned above is different from that of the breakage of structural clay,in which the geological material is regarded as a medium containing structural lumps and structural bands. In this paper, the softening behavior of a faulted rock should be regarded as a comprehensive result of the whole complicated process including slip-weakening, redistribution of stress, extension of crack tip, and the penetration of the slip surface. This process is accompanied by progressive failure and abrupt structural damage. The size of slip-weakening zone is related to the undergoing strain. Once the relative slide is initiated (local or integrated), the effect of slip-weakening will behave in a certain length behind the crack tip until the formation of the whole slip surface.
Resumo:
In order to investigate the influence of the vertical vibration loading on the liquefaction of saturated sand, one dimensional model for the saturated sand with a vertical vibration is presented based on the two phase continuous media theory. The development of the liquefaction and the liquefaction region are analyzed. It is shown that the vertical vibration loading could induce liquefaction. The rate of the liquefaction increases with the increase of the initial limit strain or initial porosity or amplitude and frequency of loading, and increases with the decrease of the permeability or initial modulus. It is shown also that there is a phase lag in the sand column. When the sand permeability distribution is non-uniform, the pore pressure and the strain will rise sharply where the permeability is the smallest, and fracture might be induced. With the development of liquefaction, the strength of the soil foundation becomes smaller and smaller. In the limiting case, landslides or debris flows could occur.
Resumo:
The shear strength of soils or rocks developed in a landslide usually exhibits anisotropic and nonlinear behavior. The process of sedimentation and subsequent consolidation can cause anisotropy of sedimentary soils or rocks, for instance. Nonlinearity of failure envelope could be attributed to "interlocking" or "dilatancy" of the material, which is generally dependent upon the stress level. An analytical method considering both anisotropy and nonlinearity of the failure envelops of soil and rocks is presented in the paper. The nonlinearfailure envelopes can be determined from routine triaxial tests. A spreadsheet program, which uses the Janbu's Generalized Procedure of Slice and incorporates anisotropic, illustrates the implementation of the approach and nonlinearfailure envelops. In the analysis, an equivalent Mohr-Coulomb linear failure criterion is obtained by drawing a tangent to the nonlinear envelope of an anisotropic soil at an appropriate stress level. An illustrative example is presented to show the feasibility and numerical efficiency of the method.
Resumo:
The formation mechanism of water film (or crack) in saturated sand is analyzed numerically It is shown that there will be no stable "water film" in the saturated sand even if the strength of the skeleton is zero and no positions are choked. The stable water films initiate and grow if the choking state keeps unchangeable once the fluid velocities of one position decreases to zero in a liquefied sand column. A simplified method for evaluating the thickness of water film is presented according to a solidification wave theory. The theoretical results obtained by the simplified method are compared with the numerical results and the experimental results of Kokusho.
Resumo:
Slope failure due to rainfall is a common geotechnical problem. The mechanics of rainfall induced landslides involves the interaction of a number of complex hydrologic and geotechnical factors. This study attempts to identify the influence of some of these factors on the stability of soil slope including rainfall intensity, hydraulic conductivity and the strength parameters of soil.
Resumo:
Water film can serve as a sliding surface and cause landslides on gentle slopes. The development of "water film" in saturated sand is analyzed numerically and theoretically based on a quasi-three-phase model. It is shown that stable water films initiate and grow if the choking state (where the fluid velocity decreases to near zero) remains steady in a liquefied sand column. Discontinuity can occur in pore water velocity, grain velocity and pore pressure after the initiation of a water film. However, the discontinuity and water film can disappear once the choking state is changed. The key to the formation of water film is the choking in the sand column caused by eroded fine grains.
Resumo:
山坡道路连接农田、果园 ,对山区经济发展有重要作用。黄土高原山坡道路存在严重的水土流失 ,侵蚀方式主要有沟蚀、泻溜、崩塌、陷穴、悬沟侵蚀与滑坡等。山坡道路网应按照小流域综合治理规划合理布置 ,其主要防护措施 :①修筑梯田 ,防止坡面径流冲刷道路 ;②将路面整修成拱形以分散径流 ;③在道路内侧修蓄水窑窖 ,拦蓄径流 ;④路面及边坡栽植草灌 ,防止雨水冲刷
Resumo:
The unique geologic, geomorphic and climatic conditions of southeast Tibet have made the region to develop the multi-style and frequently occurring geologic hazards, especially the collapses and landslides and debris flows along the section of Ranwu-Lulang in Sichuan-Tibet highway. However, most of those geologic hazards have close relationship with the loose accumulations. That is, the loose accumulations are the main carrier of most geologic hazards. Thereof, the huge-thick accumulations along the highway is regarded as the objective in the thesis to study the geologic background, hazarding model and mitigation methods comprehensively, based on the multi-disciplinary theories and former materials. First of all, in the paper, based on field engineering geologic investigations, the genetic type and the characteristics of spatiotemporal distribution of the huge-thick loose accumulations along the highway, have been analysized from the factors of regional geology and geomorphy and climate, as well as the coupling acting of those factors with inoculation and eruption of the loose accumulations geologic hazards. The huge-thick loose accumulations has complex genetic types and specific regulations of spatiotemporal distribution, closely controlled by the outer environment of the region. The accumulations are composed of earth and boulder, with disorder structure and poor sorting, specific forming environments and depositing conditions. And its physical and mechanic properties are greatly distinguished from rock and common earth inland. When Sichuan-Tibet highway was firstly constructed along the north bank of Purlung Tsangpo River, the huge-thick loose accumulations was cut into many high and steep slopes. Through the survey to the cut-slopes and systematic investigation to their failures, the combination of height and angle of the accumulations slope has been obtained. At the same time, the types of genetic structure of those cut-slopes are also analysized and concluded, as well as their failure models. It is studied in the paper that there are piaster, duality, multielement and complexity types in genetic structure, and rip-dump-repose, rip-shear-slip and weathering-flake types in failure models. Moreover, it is briefly introduced present engineering performance methods and techniques dealing with the deformation and failure of the accumulations cut-slope. It is also suggested that several new techniques of slope enforcement and the method of landslide and rockfall avoiding should be applied. The research of high and steep cut-slope along the highway has broadened the acknowledgement of the combination of cut-slope height and angle. Especially, the dissertation also has made the monographic studies about the geologic background and hazarding models and prevention methods of some classic but difficult accumulations geologic hazards. They are: (1) Research of the engineering geologic background of the 102 landslide group and key problems about the project of tunnel. The 102 landslide group is a famous accumulational one composed of glacial tills and glaciofuvial deposit. The tunnel project is a feasible and optional one which can solve the present plight of “sliding after just harnessing” in the 102 section. Based on the glacial geomorphy and its depositing character, distribution of seepage line, a few drillhole materials and some surveying data, the position of contact surface between gneiss and accumulations has been recognized, and the retreating velocities of three different time scales (short, medium and long term) have been approximately calculated, and the weathering thickness of gneiss has also been estimated in the paper. On the basis of above acknowledgement, new engineering geomechnic mode is established. Numerical analysis about the stability of the No.2 landslide is done by way of FLAC program, which supplies the conclusion that the landslide there develops periodically. Thereof, 4 projects of tunnel going through the landslide have been put forwards. Safety distance of the tunnel from clinohefron has been numerically analysized. (2) Research of the geologic setting and disaster model and hazard mitigation of sliding-sand-slope. From the geologic setting of talus cone, it is indicated that the sliding-sand-slope is the process of the re-transportation and re-deposit of sand under the gravity action and from the talus cone. It is the failure of the talus cone essentially. The layering structure of the sliding-sand-slope is discovered. The models of movement and failure of the sliding-sand-slope has been put forwards. The technique, “abamurus+grass-bush fence+degradable culture pan”, is suggested to enforcement and green the sliding-sand-slope. (3) Characteristics and hazarding model and disaster mitigation of debris flow. The sources of solid material of three oversize debris flows have been analysized. It is found that a large amount of moraine existing in the glacial valley and large landslide dam-break are the two important features for oversize debris flow to be taken place. The disaster models of oversize and common debris flows have been generalized respectively. The former model better interpret the event of the Yigong super-large landslide-dam breaking. The features of common debris flow along the highway section, scouring and silting and burying and impacting, are formulated carefully. It is suggested that check dam is a better engineering structure to prevent valley from steeply scouring by debris flow. Moreover, the function of check dam in enforcing the slope is numerically calculated by FLAC program. (4) Songzong ancient ice-dammed lake and its slope stability. The lacustrine profile in Songzong landslide, more than 88 meters thick, is carefully described and measured. The Optical Simulated Luminescence (OSL) ages in the bottom and top of the silty clay layer are 22.5±3.3 kaB.P., 16.1±1.7 kaB.P., respectively. It is indicated by the ages that the lacustrine deposits formed during the Last Glacial Maximum ranging from 25ka B.P. to 15ka B.P. The special characteristics of the lacustrine sediment and the ancient lake line in Songzong basin indicated that the lacustrine sediment is related to the blocking of the Purlung Tsangpo River by the glacier in Last Glacial Maximum from Dongqu valley. The characteristics of the lacustrine profile also indicate that the Songzong ice-dammed lake might run through the Last Glacial Maximum. Two dimensional numerical modeling and analysis are done to simulate the slope stability under the conditions of nature and earthquake by FLAC program. The factor of safety of the lacusrtine slope is 1.04, but it will take place horizontal flow under earthquake activity due to the liquefaction of the 18.33 m silt layer. The realign to prevent the road from landslide is suggested.
Resumo:
Based on field survey, laboratory testing and numerical modeling, engineering characteristics of undisturbed loess and the mechanism of long-runout loess landslides caused by underground water level rise, as well as the formation conditions and spatial distribution of landslides, are systematically studied and analyzed. Loess landslides at south Plateau of Jingyang County are mainly classified as flowslide, slide and fall. Flowslide is the main type characteristic of high velocity, long runout and multi-stages. The steep relief composed of loose structured loess-old aged soil serials and the rise of groundwater table are the predominant conditions for landslides in the study area. To study loess mechanic poperties and loess landslides mechanisims, isotropically and anisotropically consolidated undrained compression(ICU and ACU) tests and constant-deviator-drained compression (CQD) tests were carried out on undisturbed samples. The results of undrained compression tests performed at the in-situ stress level show that the soils are of consistently strain-softening in the stress-strain relations and cause high excess pore pressure. The steady-state line and the potential region of instability are obtained from ICU and ACU test results. A necessary condition for liquefaction is that the soil state initially lies in or is brought into the potential instability region. In addition, a strong strain-softening model is also formed. CQD tests demonstrate that the mobilized friction angle is far less than the steady-state angle and that the soil experiences undrained contractive failure suddenly at very small strains when its stress path during drained loading tries to cross the potential instability region,thus validates the proposed instability region. Based on the location of the region of potential instability and the stress state of slope soil, a method of static liquefaction analysis is proposed for loess landslides caused by rise in groundwater table. Compared with other liquefaction analysis methods, this method overcomes the limitations inherent in conventional slope stability method and undrained brittleness index method. Triaxial tests composed of constant water content (CW) and wetting tests at constant deviator stress are performed on undisturbed unsaturated samples. The stress-strain relation of CW tests takes on strain-hardening behavior; The results of wetting tests at constant deviator stress designed to study the mechanics of failure of unsaturated loess caused by an increase in the degree of saturation (wetting) shows that a contractive failure occurs in the undisturbed samples. On the basis of the above triaxial test results, the initiation of static liquefaction is presented for long-runout loess landslides caused by rise in groundwater table, that is, the loess slope soil gradually transfer from unsaturated to saturated state under the infiltration of irrigation. A contractive failure occurs in the local region at very small strain by increasing the pore-water pressure at constant deviator stresses under drained conditons. It is the contractive failrue resulting from rise of pore pressure that leads to high excess pore pressure in the neighbour soil which reduces shear resistance of soil. The neighbour soils also fail due to the rapid increase in pore-water pressure. Thus a connected failure surface is developed quickly and a flowslide occurs. Based on the saturated-unsaturated seepage theory, transient seepage is computed using the finite element method on loess slope under groundwater table rise. Pore-water pressure distribution for every time step after irrigation are obtained. The phreatic surface in the slope increases with the groundwater table. Pore-water pressure distribution within 8m above the phreatic surface changes very quickly,but the water content and pore water pressure in the region ranging from 8m above the phreatic surface up to ground surface is almost not affected and the matric suction usually is kept at 100~120 kPa. Based on the results of laboratory tests and seepage flow analysis, the development process of loess landslide is modeled considering groundwater table rise. The shearing plastic zone first occurs at the slope toe where the soil is soaked for long term during rise in groundwater table. As irrigation continues, the shearing plastic zone gradually extends to the interior soils, with the results that the tensile plastic zone occurs at the slope crown. As time goes on, both the shearing plastic zone and tensile plastic zone continue to extend. Then a connected plastic zone is formed and fowslide occurs. In comparision to laboratory test results, the results of numerical simulation quite well verify the presented mechanism of static liquefaction of long-runout loess landslides caused by rise in groundwater table.