20 resultados para laminated magnetic core
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
In this paper, we have reported a facile method for the synthesis of ordered magnetic core-manganese oxide shell nanostructures. The process included two steps. First, manganese ferrite nanoparticles were obtained through a solvothermal method. Then, the manganese ferrite nanoparticles were mixed directly with KMnO4 solution without any additional modified procedures of the magnetic cores. It has been found that Mn element in the core can react with KMnO4 to form manganese oxide which acts as a seed for the in-situ growth of manganese oxide shells. This is significant for the controllable fabrication of symmetrical ordered manganese oxide shell structures. The shell thickness can be easily controlled through the reaction time. Transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray powder diffraction and energy-dispersive X-ray spectroscopy have been employed to characterize the products at different reaction time.
Resumo:
Bifunctional nanoarchitecture has been developed by combining the magnetic iron oxide and the luminescent Ru(bpy)(3)(2+) encapsulated in silica. First, the iron oxide nanoparticles were synthesized and coated with silica, which was used to isolate the magnetic nanoparticles from the outer-shell encapsulated Ru(bpy)(3)(2+) to prevent luminescence quenching. Then onto this core an outer shell of silica containing encapsulated Ru(bpy)(3)(2+) was grown through the Stober method. Highly luminescent Ru(bpy)(3)(2+) serves as a luminescent marker, while magnetic Fe3O4 nanoparticles allow external manipulation by a magnetic field. Since Ru(bpy)(3)(2+) is a typical electrochemiluminescence (ECL) reagent and it could still maintain such property when encapsulated in the bifunctional nanoparticle, we explored the feasibility of applying the as-prepared nanostructure to fabricating an ECL sensor; such method is simple and effective. We applied the prepared ECL sensor not only to the typical Ru(bpy)(3)(2+) co-reactant tripropylamine (TPA), but also to the practically important polyamines. Consequently, the ECL sensor shows a wide linear range, high sensitivity, and good stability.
Resumo:
In this paper, hydrothermal synthesized Fe3O4 microspheres have been encapsulated with nonporous silica and a further layer of ordered mesoporous silica through a simple sol-gel process. The surface of the outer silica shell was further functionalized by the deposition of YVO4:Eu3+ phosphors, realizing a sandwich structured material with mesoporous, magnetic and luminescent properties. The multifunctional system was used as drug carrier to investigate the storage and release properties using ibuprofen (IBU) as model drug by the surface modification. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FT-IR), N-2 adsorption/desorption, photoluminescence (PL) spectra, and superconducting quantum interference device (SQUID) were used to characterized the samples.
Resumo:
Anew class of bifunctional architecture combining the useful functions of superparamagnetism and terbium complex luminescence into one material has been prepared via two main steps by a modified Stober method and the layer-by-layer (LbL) assembly technique. The obtained bifunctional nanocomposites exhibit superparamagnetic behavior, high fluorescence intensity, and color purity. The architecture has been characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), UV-vis absorption and emission spectroscopy, X-ray diffraction, and superconducting quantum interference device (SQUID) magnetometry.
Resumo:
Magnetic and conductive NiZn ferrite-polyaniline nanocomposites with novel core-shell structure have been fabricated by microemulsion process. The samples were characterized by XRD, TEM, SEM, IR, UV-vis, voltage/current detector and SQUID magnetometry. The core-shell structure of nanocomposites was observed by TEM. The changes of the magnetic and conductive properties after polyaniline coating were investigated.
Resumo:
Resumo:
Nickel-doped ZnO (Zn1-xNixO) have been produced using rf magnetron sputtering. X-ray diffraction measurements revealed that nickel atoms were successfully incorporated into ZnO host matrix without forming any detectable secondary phase. Ni 2p core-level photoemission spectroscopy confirmed this result and suggested Ni hits it chemical valence of 2 +. According to the . We studied the electronic magnetization measurements, no ferromagnetic but paramagnetic behavior was found for Zn0.86Ni0.14O. We studied the electronic structure of Zn0.86Ni0.14O by valence-band photoemission spectroscopy. The spectra demonstrate a structure at similar to 2 eV below the Fermi energy E-F, which is of Ni 3d origin. No emission was found at E-A, suggesting the insulating nature of the film. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Magnetic nanoparticles of Ni-doped cobalt ferrite [Co1-xNixFe2O4(0 <= x <= 1)] synthesized by coprecipitation route have been studied as a function of doping concentration (x) and particle size. The size of the particles as determined by X-ray diffractometer (XRD) and transmission electron microscope (TEM) analyses was found in the range 12-48 nm. The coercivity (H-C) and saturation magnetization (M-S) showed a decreasing behavior with increasing Ni concentration. M-S of all the samples annealed at 600 degrees C lies in the range 65.8-13.7 emu/gm. Field-cooled (FC) studies of the samples showed horizontal shift (exchange bias) and vertical shift in the magnetization loop. Strong decrease in exchange bias (H-b) and vertical shift (delta M) was found for low Ni concentrations while negligible decrease was found at higher concentrations. The presence of exchange bias in the low Ni-concentration region has been explained with reference to the interface spins interaction between a surface region (with structural and spin disorder) and a ferrimagnetic core region. M(T) graphs of the samples showed a decreasing trend of blocking temperature (T-b) with increasing Ni concentration. The decrease of T-b with increasing Ni concentration has been attributed to the lower anisotropy energy of Ni+2 ions as compared to Co+2 that increases the probability of the jump across the anisotropy barrier which in turn decreases the blocking temperature of the system.
Resumo:
Fe3O4-polylactide (PLA) core-shell nanoparticles were perpared by surface functionalization of Fe3O4 nanoparticles and subsequent surface-initiated ring-opening polymerization of L-lactide. PLA was directly connected onto the magnetic nanoparticles surface through a chemical linkage. Fourier transform infrared (FT-IR) spectra directly provided evidence of the PLA on the surface of the magnetic nanoparticles. Transmission electron microscopy images (TEM) showed that the magnetic nanoparticles were coated by PLA with a 3-nm-thick shell.
Resumo:
A near-infrared luminescent macroporous material (PL-Macromaterial) and a near-infrared luminescent/magnetic bifunctional macroporous material (MML-Macromaterial) were synthesized by using polystyrene microspheres (PS) and Fe3O4 @polystyrene core-shell nanoparticles (Fe3O4@PS), respectively, as templates. Both the PL-Macromaterial and the M/PL-Macromaterial show the characteristic emission of the Er 3, ion. Moreover, the M/PL-Macromaterial possesses superparamagnetic properties at room temperature.
Resumo:
A method to synthesize Fe3O4 core/Au shell submicrometer structures with very rough surfaces on the nanoscale is reported. The Fe3O4 particles were first modified with uniform polymers through the layer-by-layer technique and then adsorbed a lot of gold nanoseeds for further Au shell formation. The shell was composed of a large number of irregular nanoscale An particles arranged randomly, and there were well-defined boundaries between these Au nanoparticles. The Fe3O4 core/Au shell particles showed strong plasmon resonance absorption in the near-infrared range, and can be separated quickly from solution by an external magnet.
Preparation and characterization of poly (N-isopropylacrylamide)/polyvinylamine core-shell microgels
Resumo:
In this paper, well-defined temperature- and pH-sensitive core-shell microgels were synthesized by graft copolymerization in the absence of surfactant and stabilizer. The microgel particles consisted of poly (N-isopropylacrylamide (NIPAm)) core crosslinked with N, N'-methylene-bisacrylamide (MBA) and polyvinylamine (PVAm) shell. The effect of MBA content and NIPAm/PVAm ratio on microgel size was investigated. SEM showed that the microgels were spherical and had narrow particle-size distribution. TEM images of the microgels clearly displayed well-defined core-shell morphologies. Zeta-potential measurement further elucidated that the microgels possessed positively charged PVAm molecules on the microgel surface. Turbidity measurement and H-1-nuclear magnetic resonance (NMR) experiments indicated that the VPTT of microgels was the same as the LCST of PNIPAm.
Resumo:
Magnetically functionalized mesoporous silica spheres with different size (average diameter, A.D.) from 150 nm to 2 mu m and pore size distribution were synthesized by generating magnetic FexOy nanoparticles onto the mesoporous silica hosts using the sol-gel method. The X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), N-2 adsorption/desorption results show that these composites conserved regular sphere morphology and ordered mesoporous structure after the formation of FexOy nanoparticles. XRD and X-ray photoelectron spectroscopy (XPS) analysis confirmed that the FexOy generated in these mesoporous silica hosts is mainly composed of gamma-Fe2O3. Magnetic measurements reveal that these composites with different gamma-Fe2O3 loading amounts possess super-paramagnetic properties at 300 K, and the saturation magnetization increases with increasing Fe ratio loaded.
Resumo:
We introduced a new nanoreactor system consisting of nanochannel-filled Fe3O4 core and SiO2 shell. Different morphologies of Fe3O4@SiO2 Core-shell nanostructures could be obtained through simple HCI etching of the magnetic cores. The outer silica shells were permeable and the Fe3O4 cores were accessible to the reactants. Therefore, the present nanoreactor system was applied to catalyze the reduction of H2O2, and it showed outstanding catalytic activity compared with bare Fe3O4 or Fe3O4@SiO2 core-shell nanoparticles.