71 resultados para lake sediments
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Microcystin analysis in sediments and soils is considered very difficult due to low recovery for extraction. This is the primary limiting factor for understanding the fate of toxins in the interface between water and sediment in both the aquatic ecosystem as well as in soils. In the present study, a wide range of extraction solvents were evaluated over a wide range of pH, extraction approaches and equilibration time to optimize an effective extraction procedure for the analysis of microcystins in soils and lake sediments. The number of extractions required and acids in extraction solutions were also studied. In this procedure, EDTA-sodium pyrophosphate solution was selected as an extraction solvent based on the adsorption mechanism study. The optimized procedure proved to be highly efficient and achieved over 90% recovery. Finally, the developed procedure was applied to field soil and sediment sample collected from Chinese lakes during bloom seasons and microcystins were determined in six of ten samples. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Toxic metals introduced into aquatic environments by human activities accumulation in sediments. A common notion is that the association of metals with acid volatile sulfides (AVS) affords a mechanism for partitioning metals from water to solid phase, thereby reducing biological availability. However, variation in environmental conditions can mobilize the sediment-bound metal and result in adverse environmental impacts. The AVS levels and the effect of AVS on the fate of Cu, Cd, Zn, Ni in sediments in the the Changjiang River, a suboxic river with sandy bottom sediment and the Donghu Lake, a anoxic lake with muddy sediment in China, were compared through aeration, static adsorption and release experiments in laboratory. Sips isotherm equation, kinetic equation and grade ion exchange theory were used to describe the heavy metal adsorb and release process. The results showed that AVS level in the lake sediment are higher than that of the river. Heavy metals in the overlying water can transfer to sediments incessantly as long as the sediment remains undisturbed. The metal release process is mainly related to AVS oxidation in lake sediment while also related to Org-C and Fe-Mn oxyhydroxide oxidation in river sediment. The effect of sulfides on Zn and Ni is high, followed by Cd, and Cu is easy bound to Org-C. AVS plays a major role in controlling metals activity in lake sediment and its presence increase the adsorption capacity both of the lake and river sediments.
Resumo:
IEECAS SKLLQG
Resumo:
Due to a low mineral content, the sapropelic sediments depositing in Mangrove Lake, Bermuda, provide an excellent opportunity to explore for possible additions of sulfur to organic matter during the early stages of diagenesis. We evaluated early diagenetic organic sulfur transformations by monitoring the concentrations and stable isotopic compositions of a number of inorganic and organic sulfur pools, thereby accounting for all of the sulfur in the sediments. We have identified and quantified the following sulfur pools: porewater sulfate, porewater sulfide, elemental sulfur, pyrite sulfur, hydrolyzable organic sulfur (HYOS), chromium-reducible organic sulfur (CROS), and nonchromium-reducible organic sulfur (Non-CROS). Of the organic sulfur pools, the Non-CROS pool is by far the largest, followed by CROS, and finally HYOS. By 60 cm depth these pools contribute, respectively, to 85, 7.9, and 3.6% of the total solid phase sulfur. The HYOS pool is probably of biological origin and shows no interaction with the sulfur compounds produced during diagenesis. By contrast, CROS is produced, most likely, from the diagenetic addition of polysulfides to functionalized lipids in the upper, H2S-poor, elemental sulfur-rich, region of the sediment. A portion of this sulfur pool is unstable and decomposes on contact with the H2S-rich porewaters. The portion of CROS that remains in the sulfidic waters appears to readily exchange sulfur isotopes with H2S. While some of the Non-CROS pool is of biological origin, some is also formed by the diagenetic addition of sulfur to organic compounds in the upper H2S-poor region of the sediment. By contrast with CROS, Non-CROS is not diagenetically active in the H2S-rich porewaters. Overall, somewhere between 27 and 53 % of the organic sulfur buried in Mangrove Lake sediments is of diagenetic origin, with the remaining organic sulfur derived from biosynthesis. We extrapolate our Mangrove Lake results and calculate that in typical coastal marine sediments between 11 and 29 μmol g−1 of organic sulfur will form during early diagenesis, of which 2–5 μmol g−1 will be chromium reducible.
Resumo:
Classical cultivation and molecular methods based on the ammonia monooxygenase gene (amoA) were used to study the abundance and diversity of beta-proteobacterial ammonia-oxidizing bacteria (AOB) in lake sediments. The eutrophic and oligotrophic basins of a Chinese shallow lake (Lake Donghu), in terms of ammonium (NH4+) concentrations, were sampled. The AOB number was significantly lower in the oligotrophic basin, but significantly higher in the eutrophic basin. In addition, using restriction fragment length polymorphism targeting the amoA, ten restriction patterns including six unique ones were found in the eutrophic basin, while five patterns were observed in the oligotrophic basin with only one unique restriction group. Phylogenetic analysis for AOB revealed that Nitrosomonas oligotropha- and Nitrosomonas ureae-related AOB and Nitrosospira-affiliated AOB were ubiquitous; the former dominated in the eutrophic basin (87.2%), while the latter dominated in the oligotrophic basin (65.5%). Furthermore, Nitrosomonas communis-related AOB was only detected in the eutrophic basin, at a small proportion (3.2%). These results indicate significant selection and adaptation of sediment AOB in lakes with differing trophic status. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
Although studies on carbon burial in lake sediments have shown that lakes are disproportionately important carbon sinks, many studies on gaseous carbon exchange across the water-air interface have demonstrated that lakes are supersaturated with CO2 and CH4 causing a net release of CO2 and CH4 to the atmosphere. In order to more accurately estimate the net carbon source/sink function of lake ecosystems, a more comprehensive carbon budget is needed, especially for gaseous carbon exchange across the water-air interface. Using two methods, overall mass balance and gas exchange and carbon burial balance, we assessed the carbon source/sink function of Lake Donghu, a subtropical, eutrophic take, from April 2003 to March 2004. With the overall mass balance calculations, total carbon input was 14 905 t, total carbon output was 4950 1, and net carbon budget was +9955 t, suggesting that Lake Donghu was a great carbon sink. For the gas exchange and carbon burial balance, gaseous carbon (CO2 and CH4) emission across the water-air interface totaled 752 t while carbon burial in the lake sediment was 9477 t. The ratio of carbon emission into the atmosphere to carbon burial into the sediment was only 0.08. This low ratio indicates that Lake Donghu is a great carbon sink. Results showed good agreement between the two methods with both showing Lake Donghu to be a great carbon sink. This results from the high primary production of Lake Donghu, substantive allochthonous carbon inputs and intensive anthropogenic activity. Gaseous carbon emission accounted for about 15% of the total carbon output, indicating that the total output would be underestimated without including gaseous carbon exchange. (C) 2007 Elsevier Ltd. All rights reserved.