11 resultados para isolated co-cultures
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
HETEROSIGMA-AKASHIWO RAPHIDOPHYCEAE; CENTRAL VENICE LAGOON; ALEXANDRIUM-TAMARENSE; RED-TIDE; COASTAL LAGOONS; PHYTOPLANKTON; GROWTH; BAY; DINOFLAGELLATE; COMPETITION
Resumo:
Four azaphilones, named phomoeuphorbins A-D (1-4) were isolated from cultures of Phomopsis euphorbiae, an endophytic fungus isolated from Trewia nudiflora. Structures of 1-4 were established on the basis of spectroscopic analyses, including application of
Resumo:
The allelopathic effects of two submerged macrophytes, Najas minor and Potamogeton malaianus, on growth, photosynthesis and antioxidant systems of Scenedesmus obliquus were assessed in coexistence experiments. The growth of S. obliquus was significantly suppressed by the two macrophytes. Moreover, P. malaianus showed the stronger growth inhibition effect on S. obliquus than N. minor. P. malaianus obviously inhibited the photosynthetic rate of S. obliquus, while N. minor had no inhibitory effect. Lipid peroxidation and three antioxidant enzymes activities (superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD)) of S. obliquus were investigated at the end of the co-cultures. The two macrophytes significantly enhanced the malondialdehyde (MDA) content, a product of lipid peroxidation, in S. obliquus. Activities of the three antioxidant enzymes of S. obliquus were simultaneously stimulated in P. malaianus treatment, while no significant variation of POD activity was observed in N. minor treatment. The results indicated that the two macrophytes N. minor and P. malaianus had significant allelopathic effects on S. obliquus. However, the two macrophytes influenced S. obliquus in different ways.
Resumo:
In one of our recent studies, two HCV genotype 6 variants were identified in patients from Hong Kong and Guangxi in southern China, with injection drug use and HIV-1 co-infection. We report the complete genomic sequences for these two variants: GX004 and
Resumo:
A Gram-positive bacterium, designated strain CW 7(T), was isolated from forest soil in Anhui Province, south-east China. Cells were strictly aerobic, motile with peritrichous flagella and rod-shaped. The strain grew optimally at 30-37 degrees C and pH 7.0-8.0. The major fatty acids of strain CW 7(T) were anteiso-C-15:0, iso-C-15:0 and anteiso-C-17:0. The predominant menaquinone was MK-7. The cell-wall peptidoglycan contained meso-diaminopimelic acid. The G + C content of the genomic DNA was 42.3 mol%. Phylogenetic analysis indicated that strain CW 7(T) belonged to a monophyletic cluster within the genus Bacillus and showed 16S rRNA gene sequence similarities of less than 96.5% to recognized species of the genus Bacillus. The results of the polyphasic taxonomic study, including phenotypic, chemotaxonomic and phylogenetic analyses, showed that strain CW 7(T) represents a novel species of the genus Bacillus, for which the name Bacillus pallidus sp. nov. is proposed. The type strain is CW 7(T) (=KCTC 13200(T)=CCTCC AB 207188(T)=LMG 24451(T)).
Resumo:
The phytoplankton community in Lake Dianchi (Yunnan Province, Southwestern China) is dominated in April by a bloom of Aphanizomenon, that disappears Suddenly and is displaced by a Microcystis bloom in May. The reasons for the rapid bloom disappearance phenomenon and the temporal variability in the composition of phytoplankton assemblages are poorly understood. Cell growth, ultrastructure and physiological changes were examined in cultures of Aphanizomenon sp. DC01 isolated from Lake Dianchi exposed to different closes of rnicrocystin-RR (MC-RR) produced by the Microcystis bloom. MC-RR concentrations above 100 mu g L-1 markedly inhibited the pigment (chlorophyll-a, phycocyanin) synthesis and caused an increase of soluble carbohydrate and protein contents and nitrate reductase activity of toxin-treated blue-green algae. A drastic. reduction in photochemical efficiency of PSII (Fv/Fm) was also found. Morphological examinationn showed that the Aphanizomenon filaments disintegrated and file cells lysed gradually after 48 h Of toxin exposure. Transmission electron microscopy revealed that cellular inclusions of stressed cells almost leaked out completely and the cell membranes were grossly damaged. These findings demonstrate the allelopathic activity of Microcystis aeruginosa inducing physiological stress and cell death of Aphanizomenon sp. DC01 Although the active concentrations of microcystin were rather high, we propose that microcystin may function as allelopathic Substance due to inhomogeneous toxin concentrations close to Microcystis cells. Hence, it may play a role in species Succession of Aphanizomenon and Microcystis in Lake Dianchi.
Resumo:
Co-infection of two viruses has been observed in mandarin fish (Siniperca chuatsi), but the two viruses have not been characterized. In this study, a rhabdovirus has been isolated from the co-infected two viruses extracted from the diseased mandarin fish, and its morphological structure and partial biochemical and biophysical characteristics have been observed and analyzed. The isolated rhabdovirus has a typical bullet shape, and is therefore called S. chttatsi rhabdovirus (SCRV). And, the isolated rhabdovirus produced a higher titer (10(8.5) TCID50 ml(-1)) than did the co-infecting viruses (10(6.5) TCID50 ml(-1)). Subsequently, the viral genome RNA was extracted, and used as template to clone the complete nucleoprotein (N) gene by RT-PCR amplification. Cloning and sequencing of the SCRV N protein revealed 42%-31% amino acid identities to that of trout rhabdovirus 903/87 and the rhabdoviruses in genus Vesiculovirus. SDS-PAGE separation of the isolated SCRV and other two rhabdoviruses also revealed obvious polypeptide profile difference. Moreover, the anti-SCRV N protein antibody was prepared, and the anti-SCRV N protein antibody only could recognize the SCRV N protein, whereas no antigenicity was detected in other two rhabdoviruses. The data suggested that the SCRV should be a rhabdovirus member related to the genus Vesiculovirus in the Rhabdoviridae. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Hot water-soluble polysaccharides woe extracted from field colonies and suspension cultures of Nostoc commune Vaucher, Nostoc flagelliforme Berkeley et Curtis, and Nostoc sphaeroides Kutzing. Excreted extracellular polymeric substances (EPS) were isolated from the media in which the suspension cultures were grown. The main monosaccharides of the field colony polysaccharides from the three species were glucose, xylose, and galactose, with an approximate ratio of 2:1:1. Mannose was also present, but the levels varied among the species, and arabinose appeared only in N. flagelliforme. The compositions of the cellular polysaccharides and EPS from suspension cultures were more complicated than those of the field samples and varied among the different species. The polysaccharides from the cultures of N. flagelliforme had a relatively simple composition consisting of mannose, galactose, glucose, and glucuronic acid, but no xylose, as was found in the field colony polysaccharides. The polysaccharides from cultures of N. sphaeroides contained glucose (the major component), rhamnose, fucose, xylose, mannose, and galactose. These same sugars were present in the polysaccharides from cultures of N. commune, with xylose as the major component. Combined nitrogen in the media had no qualitative influence on the compositions of the cellular polysaccharides but affected those of the EPS of N. commune and N. flagelliforme. The EPS of N. sphaeroides had a very low fetal carbohydrate content and thus was not considered to be polysaccharide in nature. The field colony polysaccharides could be separated by anion exchange chromatography into neutral and acidic fractions having similar sugar compositions. Preliminary linkage analysis showed that 1) xylose, glucose, and galactose were 1-->4 linked, 2) mannose, galactose, and xylose occurred as terminal residues, and 3) branch points occurred in glucose as 1-->3,4 and 1-->3,6 linkages and in xylose as a 1-->3,4 linkage. The polymer preparations from field colonies had higher kinematic viscosities than those from corresponding suspension cultures. The high viscosities of the polymers suggested that they might DE suitable for industrial uses.
Resumo:
Variations of cellular total lipid, total carbohydrate and total protein content of two dominant bloom-forming species (Skeletonema costatum and Prorocentrum donghaiense) isolated from the Yangtze River Estuary were examined under six different nutrient conditions in batch cultures. Daily samples were collected to estimate the cell growth, nutrient concentration and three biochemical compositions content during 7 days for S. costatum and the same sampling procedure was done every other day during 10 days for P. donghaiense. Results showed that for S. costatum, cellular total lipid content increased under phosphorus (P) limitation, but not for nitrogen (N) limitation; cellular carbohydrate were accumulated under both N and P limitation: cellular total protein content of low nutrient concentration treatments were significantly lower than that of high nutrient concentration treatments. For P. donghaiense, both cellular total lipid content and total carbohydrate content were greatly elevated as a result of N and P exhaustion, but cellular total protein content had no significant changes under nutrient limitation. In addition, the capability of accumulation of three biochemical constituents of P. donghaiense was much stronger than that of S. costatum. Pearson correlation showed that for both species, the biochemical composition of three constituents (lipid, carbohydrate and protein) had no significant relationship with extracellular N concentration, but had positive correlation with extracellular and intracellular P concentration. The capability of two species to accumulate cellular total lipid and carbohydrate under nutrient limitation may help them accommodate the fluctuating nutrient condition of the Yangtze River Estuary. The different responses of two species of cellular biochemical compositions content under different nutrient conditions may provide some evidence to explain the temporal characteristic of blooms Caused by two species in the Yangtze River Estuary. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The relationship between Alexandrium tamarense (Lebour) Balech, one of red-tide alga, and two strains of marine bacteria, Bacillius megaterium(S-7) and B. halmapulus(S-10) isolated from Xiamen Western Sea, was investigated by evaluating the growth state of A. tamarense and the variation of P-glucosidase activity in co-culture system. The results showed the growth and multiplication of the alga were related with the concentration, genus speciality of the bacteria, and growth stage of the alga itself. The growth of A. tamarense was obviously inhibited by S7 and S, at high concentration. Either inhibition or promotion contributed much more clearly in earlier than in later stage of the growth of the alga. Furthermore, there was a roughly similar variation trend of the activity of extra-cellular enzyme, beta-glucosidase, in the water of the separately co-cultured bacteria S-7 and S-10 with the alga. The beta-glucosidase activity (beta-GlcA) rapidly increased during the later algal growth accompanying the increase of the lysis of the alga cells. The obvious inhibition of A. tamarense by marine bacteria at high concentration and evident increase of beta-GlcA in co-colture system would help us in better understanding the relationship between red-tide alga and bacteria, and also enlightened us the possible use of bacteria in the bio-control of red-tide.
Resumo:
Interactions between Prorocentrum donghaiense and Alexandrium tamarens, two bloom-forming dinoflagellates, were investigated using bi-algal cultures. All R donghaiense died, but A. tamarense was hardly affected by the end of the experiment when the initial cell density was set at 1.0 X 10(4) cells mL(-1) for P. donghaiense and 0.28 x 10(4) cells mL(-1) for A. tamarense. However, significant growth suppression occurred in either species when the initial cell density of P donghaiense increased to I. 0 X 105 Cells mL(-1) in the bi-algal culture, but no out-competement was observed. The simultaneous assay on the culture filtrates showed that P donghaiense filtrate prepared at a lower initial density (1.0 X 10(4) cells mL(-1)) stimulated growth of the co-cultured A. tanzarense (0.28 x 10(4) cells mL(-1)), but filtrate at a higher initial density (1.0 x 10(5) cells mL(-1)) depressed its growth. The filtrate of A. tamarense at a density of 0.28 x 10(4) cells mL(-1) killed all R donghaiense at a lower density (1.0 x 10(4) cells mL(-1)), but only exhibited an inhibitory effect on it at a higher density (1.0 x 10(5) cells mL(-1)). It is likely that these two species of microalgae interfere with each other mainly by releasing allelochemical substance(s) into the culture medium, and a direct cell-to-cell contact was not necessary for their mutual interaction. The allelopathic test further proved that A. tamarense could affect the growth of co-cultured P. donghaiense by producing allelochemical(s); moreover, A. tamarense culture filtrate at the stationary growth phase (SP) had a strongly inhibitory effect on P donghaiense compared to that at the exponential phase (EP). Results also demonstrated a dose-dependent relationship between the microalgal initial cell density and the degree of the allelopathic effect. The growth of R donghaiense and A. tamarense in the bi-algal cultures was simulated using a mathematical model to quantify the interaction. The estimated parameters from the model showed that the inhibition exerted by A. tamarense on P. donghaiense was about 17 and 8 times stronger than the inhibition P. donghaiense exerted on A. tamarense, when the initial cell density was set at 1.0 X 10(4) and 1.0 X 10(5) cells mL(-1) for P donghaiense, respectively. and 0.28 x 10(4) cells mL(-1) for A. tamarense in the bi-algal cultures. A. tamarense seems to have a survival strategy that is superior to that of P. donghaiense in bi-algal cultures under controlled laboratory conditions. (c) 2006 Elsevier B.V. All rights reserved.