75 resultados para iron-based coagulants

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high toughness wear resistant coating is produced by laser clad Fe-Cr-W-Ni-C alloys. The microstructural and compositional features of the laser-solidified microstructures and phase evolutions occurring during high temperature tempering at 963 K were investigated by using analytical electron microscopy with energy dispersive X-ray analysis. The clad coating possesses the hypereutectic microstructure consisted of M7C3 + (Y + M7C3) Du ring high temperature aging, the precipitation of M23C6 and M2C in austenite and in situ transformation of dendritic M7C3 to M23C6 and eutectic M7C3 to M6C occurred. The laser clad coating reveals an evident secondary hardening and superior impact wear resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microstructural and compositional features of the laser-solidified microstructures and phase evolutions occurring during high temperature tempering were investigated by using analytical electron microscopy with energy dispersive X-ray analysis. The cladded alloy, a powder mixture of Fe, Cr, W, Ni and C with a weight ratio of 10:5:1:1:1, was processed with a 3 kW continuous wave CO2 laser. The cladded coating possessed the hypoeutectic microstructure of the primary dendritic gamma-austenite and interdendritic eutectic consisting of (gamma+M7C3). The gamma-austenite is a nonequilibrium phase with extended solid solution of alloying elements. And, a great deal of fine structures, i.e., a high density of dislocations, twins, and stacking faults existed in austenite phase. During high temperature aging, the precipitation of M23C6, MC and M2C in austenite and in situ transformation of M7C3(+gamma) --> M23C6 and M7C3+gamma --> M6C occurred. The laser clad coating revealed an evident secondary hardening and superior impact wear resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapidly solidified microstructural and compositional features, the precipitation and transformation of carbides during tempering, and the impact wear resistance of an iron-based alloy coating prepared by laser cladding are investigated. The clad coating alloy, a powder mixture of Fe, Cr, W, Ni, and C with a weight ratio of 10:5:1.1.1, is processed using a continuous wave CO, laser. Microstructural studies demonstrate that the coating possesses the hypoeutectic microstructure comprising the primary dendritic gamma-austenite and interdendritic eutectic consisting of gamma-austenite and M7C3 carbides. gamma-Austenite is a non-equilibrium phase with an extended solid solution of alloying elements. During high temperature tempering at 963 K for 1 h, the precipitation of M23C6, MC and M2C carbides in austenite and in situ carbide transformation of M7C3 to M23C6 and M7C3 to M6C respectively are observed. In addition, the microstructure of the laser-clad coating reveals an evident secondary hardening and a superior impact wear resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of counter-ions on the coagulation of biologically treated molasses wastewater using iron-based coagulants was investigated. Parameters such as removals of chemical oxygen demand (COD) and color, and residual turbidity, were measured to evaluate coagulation performance. Experimental results showed that ferric chloride and ferric nitrate were more effective than ferric sulfate at optimal dosages, achieving 89 to 90% and 98 to 99% of COD and color removals, respectively, with residual turbidity of less than 5 NTU. High-performance size exclusion chromatography (HPSEC) results revealed differences in the removal of the molecular weight fraction of organic compounds using iron salts. Scanning electron microscopy (SEM) showed randomly formed coagulated flocs characterized with irregular, sheet-like shapes. Nitrate and chloride counter-ions had similar effects on coagulation performance compared to sulfate. Both FeCl3 and Fe(NO3)(3) yielded better results than Fe(SO4)(2) under underdosed and optimum dosage conditions. Coagulation efficiency was less adversely affected in the overdosed regions, however, if sulfate rather than chloride or nitrate was present. Water Environ. Res., 81, 2293 (2009).