49 resultados para intrinsic Gaussian Markov random field
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Accurate, analytical series expressions for the far-field diffraction of it Gaussian beam normally incident on a circular and central obscured aperture are derived with the help of the integration of parts method. With this expression, the far-field intensity distribution pattern can be obtained and the divergence angle is deduced too. Using the first five items of the series, the accuracy can satisfy most laser application fields. Compared with the conventional numerical integral method, the series representation is very convenient for understanding the physical meanings. (C) 2007 Elsevier GmbH. All rights reserved.
Resumo:
Both commercial and scientific applications often need to transform color images into gray-scale images, e. g., to reduce the publication cost in printing color images or to help color blind people see visual cues of color images. However, conventional color to gray algorithms are not ready for practical applications because they encounter the following problems: 1) Visual cues are not well defined so it is unclear how to preserve important cues in the transformed gray-scale images; 2) some algorithms have extremely high time cost for computation; and 3) some require human-computer interactions to have a reasonable transformation. To solve or at least reduce these problems, we propose a new algorithm based on a probabilistic graphical model with the assumption that the image is defined over a Markov random field. Thus, color to gray procedure can be regarded as a labeling process to preserve the newly well-defined visual cues of a color image in the transformed gray-scale image. Visual cues are measurements that can be extracted from a color image by a perceiver. They indicate the state of some properties of the image that the perceiver is interested in perceiving. Different people may perceive different cues from the same color image and three cues are defined in this paper, namely, color spatial consistency, image structure information, and color channel perception priority. We cast color to gray as a visual cue preservation procedure based on a probabilistic graphical model and optimize the model based on an integral minimization problem. We apply the new algorithm to both natural color images and artificial pictures, and demonstrate that the proposed approach outperforms representative conventional algorithms in terms of effectiveness and efficiency. In addition, it requires no human-computer interactions.
Resumo:
本文针对基于马尔可夫随机场模型(MRF)的图像分割技术进行研究,通过深入分析马尔可夫随机场模型用于图像分割时的优缺点,提出了改进方案,将其用于单帧图像的无监督分割和动态场景下的运动目标分割。主要研究内容包括以下几部分。 第一部分详细介绍了马尔可夫随机场模型,包括邻域系统和基团的概念、初始标记场的获取、能量函数的确立和MAP估算方法。 第二部分针对噪声图像的预处理,提出一种多尺度双边滤波算法来综合不同尺度下双边滤波的去噪效果。为降低双边滤波的计算复杂性,提出一种双边滤波快速计算方法。该算法能够在去除噪声的同时较好地保留边缘。 第三部分针对MRF模型用于图像分割中遇到的过平滑问题,定义了一种间断自适应高斯马尔可夫随机场模型(DA-GMRF),提出一种基于该模型的无监督图像分割方法。利用灰度直方图势函数自动确定分类数及分割阈值,进行多阈值分割得到标记场的初始化,用Metroplis采样器算法进行标记场的优化,得到最终的分割结果。该方法考虑了平滑约束在图像边缘处的自适应性,避免了边缘处的过平滑,将其应用于无监督图像分割取得了较好的效果。 第四部分针对动态场景下的运动目标分割,提出一种基于间断自适应时空马尔可夫随机场模型的运动目标分割方法。解决了传统时空马尔可夫随机场模型不能对运动造成的显露遮挡现象进行处理问题,也克服了全局一致平滑假设造成的过平滑问题。帧差图像二值化得到初始标记场,初始标记场进行‘与’操作获得共同标记场,用Metroplis采样器算法实现共同标记场的优化。该方法既使用了平滑约束,而又保留了间断,从而使分割得到的运动目标边缘更加准确。
Resumo:
The seismic survey is the most effective geophysical method during exploration and development of oil/gas. As a main means in processing and interpreting seismic data, impedance inversion takes up a special position in seismic survey. This is because the impedance parameter is a ligament which connects seismic data with well-logging and geological information, while it is also essential in predicting reservoir properties and sand-body. In fact, the result of traditional impedance inversion is not ideal. This is because the mathematical inverse problem of impedance is poor-pose so that the inverse result has instability and multi-result, so it is necessary to introduce regularization. Most simple regularizations are presented in existent literature, there is a premise that the image(or model) is globally smooth. In fact, as an actual geological model, it not only has made of smooth region but also be separated by the obvious edge, the edge is very important attribute of geological model. It's difficult to preserve these characteristics of the model and to avoid an edge too smooth to clear. Thereby, in this paper, we propose a impedance inverse method controlled by hyperparameters with edge-preserving regularization, the inverse convergence speed and result would be improved. In order to preserve the edge, the potential function of regularization should satisfy nine conditions such as basic assumptions edge preservation and convergence assumptions etc. Eventually, a model with clear background and edge-abnormity can be acquired. The several potential functions and the corresponding weight functions are presented in this paper. The potential functionφLφHL andφGM can meet the need of inverse precision by calculating the models. For the local constant planar and quadric models, we respectively present the neighborhood system of Markov random field corresponding to the regularization term. We linearity nonlinear regularization by using half-quadratic regularization, it not only preserve the edge, and but also simplify the inversion, and can use some linear methods. We introduced two regularization parameters (or hyperparameters) λ2 and δ in the regularization term. λ2 is used to balance the influence between the data term and the transcendental term; δ is a calibrating parameter used to adjust the gradient value at the discontinuous position(or formation interface). Meanwhile, in the inverse procedure, it is important to select the initial value of hyperparameters and to change hyperparameters, these will then have influence on convergence speed and inverse effect. In this paper, we roughly give the initial value of hyperparameters by using a trend- curve of φ-(λ2, δ) and by a method of calculating the upper limit value of hyperparameters. At one time, we change hyperparameters by using a certain coefficient or Maximum Likelihood method, this can be simultaneously fulfilled with the inverse procedure. Actually, we used the Fast Simulated Annealing algorithm in the inverse procedure. This method overcame restrictions from the local extremum without depending on the initial value, and got a global optimal result. Meanwhile, we expound in detail the convergence condition of FSA, the metropolis receiving probability form Metropolis-Hasting, the thermal procession based on the Gibbs sample and other methods integrated with FSA. These content can help us to understand and improve FSA. Through calculating in the theoretic model and applying it to the field data, it is proved that the impedance inverse method in this paper has the advantage of high precision practicability and obvious effect.
Resumo:
Stochastic reservoir modeling is a technique used in reservoir describing. Through this technique, multiple data sources with different scales can be integrated into the reservoir model and its uncertainty can be conveyed to researchers and supervisors. Stochastic reservoir modeling, for its digital models, its changeable scales, its honoring known information and data and its conveying uncertainty in models, provides a mathematical framework or platform for researchers to integrate multiple data sources and information with different scales into their prediction models. As a fresher method, stochastic reservoir modeling is on the upswing. Based on related works, this paper, starting with Markov property in reservoir, illustrates how to constitute spatial models for catalogued variables and continuum variables by use of Markov random fields. In order to explore reservoir properties, researchers should study the properties of rocks embedded in reservoirs. Apart from methods used in laboratories, geophysical means and subsequent interpretations may be the main sources for information and data used in petroleum exploration and exploitation. How to build a model for flow simulations based on incomplete information is to predict the spatial distributions of different reservoir variables. Considering data source, digital extent and methods, reservoir modeling can be catalogued into four sorts: reservoir sedimentology based method, reservoir seismic prediction, kriging and stochastic reservoir modeling. The application of Markov chain models in the analogue of sedimentary strata is introduced in the third of the paper. The concept of Markov chain model, N-step transition probability matrix, stationary distribution, the estimation of transition probability matrix, the testing of Markov property, 2 means for organizing sections-method based on equal intervals and based on rock facies, embedded Markov matrix, semi-Markov chain model, hidden Markov chain model, etc, are presented in this part. Based on 1-D Markov chain model, conditional 1-D Markov chain model is discussed in the fourth part. By extending 1-D Markov chain model to 2-D, 3-D situations, conditional 2-D, 3-D Markov chain models are presented. This part also discusses the estimation of vertical transition probability, lateral transition probability and the initialization of the top boundary. Corresponding digital models are used to specify, or testify related discussions. The fifth part, based on the fourth part and the application of MRF in image analysis, discusses MRF based method to simulate the spatial distribution of catalogued reservoir variables. In the part, the probability of a special catalogued variable mass, the definition of energy function for catalogued variable mass as a Markov random field, Strauss model, estimation of components in energy function are presented. Corresponding digital models are used to specify, or testify, related discussions. As for the simulation of the spatial distribution of continuum reservoir variables, the sixth part mainly explores 2 methods. The first is pure GMRF based method. Related contents include GMRF model and its neighborhood, parameters estimation, and MCMC iteration method. A digital example illustrates the corresponding method. The second is two-stage models method. Based on the results of catalogued variables distribution simulation, this method, taking GMRF as the prior distribution for continuum variables, taking the relationship between catalogued variables such as rock facies, continuum variables such as porosity, permeability, fluid saturation, can bring a series of stochastic images for the spatial distribution of continuum variables. Integrating multiple data sources into the reservoir model is one of the merits of stochastic reservoir modeling. After discussing how to model spatial distributions of catalogued reservoir variables, continuum reservoir variables, the paper explores how to combine conceptual depositional models, well logs, cores, seismic attributes production history.
Resumo:
We investigated M-2 factor and far-field distribution of beams generated by Gaussian mirror resonator. And we found usable analytical expressions of the M2 factor and the far-field distribution intensity with respect to variation of diffraction parameters. Particular attention was paid to the parameters such as mirror spot size and reflectance of the Gaussian mirror. (c) 2006 Elsevier GrnbH. All rights reserved.
Resumo:
Random field theory has been used to model the spatial average soil properties, whereas the most widely used, geostatistics, on which also based a common basis (covariance function) has been successfully used to model and estimate natural resource since 1960s. Therefore, geostistics should in principle be an efficient way to model soil spatial variability Based on this, the paper presents an alternative approach to estimate the scale of fluctuation or correlation distance of a soil stratum by geostatistics. The procedure includes four steps calculating experimental variogram from measured data, selecting a suited theoretical variogram model, fitting the theoretical one to the experimental variogram, taking the parameters within the theoretical model obtained from optimization into a simple and finite correlation distance 6 relationship to the range a. The paper also gives eight typical expressions between a and b. Finally, a practical example was presented for showing the methodology.
Resumo:
We present a method of image-speckle contrast for the nonprecalibration measurement of the root-mean-square roughness and the lateral-correlation length of random surfaces with Gaussian correlation. We use the simplified model of the speckle fields produced by the weak scattering object in the theoretical analysis. The explicit mathematical relation shows that the saturation value of the image-speckle contrast at a large aperture radius determines the roughness, while the variation of the contrast with the aperture radius determines the lateral-correlation length. In the experimental performance, we specially fabricate the random surface samples with Gaussian correlation. The square of the image-speckle contrast is measured versus the radius of the aperture in the 4f system, and the roughness and the lateral-correlation length are extracted by fitting the theoretical result to the experimental data. Comparison of the measurement with that by an atomic force microscope shows our method has a satisfying accuracy. (C) 2002 Optical Society of America.
Resumo:
Based on the rigorous formulation of integral equations for the propagations of light waves at the medium interface, we carry out the numerical solutions of the random light field scattered from self-affine fractal surface samples. The light intensities produced by the same surface samples are also calculated in Kirchhoff's approximation, and their comparisons with the corresponding rigorous results show directly the degree of the accuracy of the approximation. It is indicated that Kirchhoff's approximation is of good accuracy for random surfaces with small roughness value w and large roughness exponent alpha. For random surfaces with larger w and smaller alpha, the approximation results in considerable errors, and detailed calculations show that the inaccuracy comes from the simplification that the transmitted light field is proportional to the incident field and from the neglect of light field derivative at the interface.
Resumo:
We report an observation of femtosecond optical fluctuations of transmitted light when a coherent femtosecond pulse propagates through a random medium. They are a result of random interference among scattered waves coming from different trajectories in the time domain. Temporal fluctuations are measured by using cross-correlated frequency optical gating. It is shown that a femtosecond pulse will be broadened and distorted in pulse shape while it is propagating in random medium. The real and imaginary components of transmitted electric field are also distorted severely. The average of the fluctuated transmission pulses yields a smooth profile, probability functions show good agreement with Gaussian distribution. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Spatial coherence properties of beam produced by Gaussian Schell-model source when the beam is propagating through atmosphere have been analyzed in terms of position vectors. New expressions for cross-spectral density of optical field and spectral degree of coherence as well as radiant intensity have been developed. Numerical results illustrated in this paper indicate the coherence degradation suffered from atmospheric turbulence and their directional dependence. (C) 2007 Elsevier GmbH. All rights reserved.
Resumo:
The analytical vectorial structure of HGB is investigated in the far field based on the vector plane wave spectrum and the method of stationary phase. The energy flux distributions of HGB in the far-field, which is composed of TE term and TM term, are demonstrated. The physics pictures of HGB is illustrated from the vectorial structure, which is important to understand the theoretical aspects of both scalar and vector HGB propagation. (c) 2008 Optical Society of America.
Resumo:
The far-field intensity distribution of hollow Gaussian beams was investigated based on scalar diffraction theory. An analytical expression of the M-2 factor of the beams was derived on the basis of the second-order moments. Moreover, numerical examples to illustrate our analytical results are given. (c) 2005 Optical Society of America.