42 resultados para intercalation
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
神经管闭合缺陷(NTDs)是一种严重的先天畸形疾病,在新生儿中有千分之一的发病率.神经管融合前后,多种组织参与形态发生运动.神经管一经融合,神经嵴细胞就会向背侧中线方向产生单极突出并向此方向迁移形成神经管的顶部.与此同时,神经管从腹侧开始发生辐射状切入以实现单层化.在此,我们在非洲爪蟾的移植体中机械阻断神经管的闭合以检测其细胞运动及随后的图式形成.结果显示神经管闭合缺陷的移植体不能形成单层化的神经管,并且神经嵴细胞滞留在侧面区域不能向背侧中线迁移,而对神经前体标记基因的检测显示神经管的背腹图式形成并未受到影响.以上结果表明神经管的融合对于辐射状切入和神经嵴细胞向背侧中线方向的迁移过程是必需的,而对于神经管的沿背腹轴方向的图式形成是非必需的.
Resumo:
Excess intercalation of cationic surfactants into Na-montmorillonites (MMTs) was investigated in organically modified silicates (OMSs), synthesized with MMTs and octadecylammonium chloride (OAC) by systematically varying the surfactant loading level from 0.625 to 1, 1.25, 1.56, 2, and 2.5 with respect to the cation exchange capacity (CEC) of MMTs. Wide-angle X-ray diffraction and thermogravimetric analysis results indicated that the continuous increase of interlayer distances came from the entering of surfactants into the interlayer of MMTs. Excess surfactants were extracted with a Soxhlet apparatus, which showed two kinds of intercalation states of surfactants in the interlayer when the surfactant loading level was beyond the CEC. Fourier transform infrared spectroscopy and differential scanning calorimetry were used to explore the microstructures of OMSs. It was found that the surfactants arranged more orderly as the loading level increased and the excess surfactants piled up in the interlayer together with counterions, forming a sandwiched surfactant layer. On the basis of the results, the layer structures of OMSs and the mechanism by which the surfactants entered the interlayer were expounded: surfactant cations entered the interlayer through cation exchange reactions and were tightly attracted to the silicate platelet surfaces when the surfactant loading level was below the CEC;
Resumo:
近年来,由于有机和无机成分在纳米尺寸上的结合而带来的优异性能使得聚合物/蒙脱土纳米复合材料得到广泛关注。在诸多方法中,因能够使用传统的聚合物熔融挤出、共混等加工设备而无需额外的设备投资,投资低、见效快而且对周围环境没有污染等优点,熔融插层法倍受青睐。然而,通常认为亲油性聚合物无法直接插层蒙脱土,而需要预先用插层剂处理蒙脱土。大多数聚合物是亲油性的,这将大大增加制备材料的成本和工艺的复杂性,并因引入了小分子插层剂而有损材料性能的提高,从而阻碍了该技术的应用和推广。本文从理论上研究了插层剂用量对有机化蒙脱土及聚合物/蒙脱土纳米复合材料微观结构的影响,探索一种无需改性蒙脱土或用很少插层剂改性蒙脱土的制备聚合物/蒙脱土纳米复合材料的方法。1.系统地改变插层剂用量,制备不同的有机化蒙脱土。通过广角X射线衍射、热失重分析、索氏抽提器抽提、差热分析和付立叶红外分析等表征手段,研究了插层剂插层机理以及插层剂在蒙脱土层间的排列方式,为进一步研究有机化蒙脱土在聚合物树脂中的分散奠定基础。结果表明,插层剂插层蒙脱土机理和在蒙脱土层间的排列方式随着插层剂用量的变化而不同。2.用不同的亲油性聚合物熔融插层有机化蒙脱土以制备相应的聚合物/蒙脱土纳米复合材料。用广角嘴射线衍射仪和透射电子显微镜分析研究了蒙脱土在聚合物/蒙脱土纳米复合材料中分散状态。结果表明,随着插层剂用量的减少,蒙脱土片层在聚合物树脂中的分散逐渐由插层型过渡到剥离型,即减少改性蒙脱土时插层剂用量有利于蒙脱土在纳米尺寸上分散于聚合物树脂中。3.用不同的亲油性聚合物直接熔融插层未改性的蒙脱土,广角X射线衍射仪和透射电子显微镜表征结果表明,与蒙脱土片层有相互作用的亲油性聚合物能够直接熔融插层未改性的蒙脱土,获得剥离或插层型聚合物/蒙脱土纳米复合材料,这对于蒙脱土在聚合物改性中的应用具有重要的实际意义和理论意义。4.用共同的母料制备聚丙烯/酸配化聚丙烯/蒙脱土纳米复合材料和尼龙12/酸醉化聚丙烯/蒙脱土纳米复合材料,用广角X射线衍射仪和透射电子显微镜对比分析蒙脱土在聚合物中分散的差异,从而了解聚丙烯与酸配化聚丙烯之间的增容作用对蒙脱土在聚丙烯树脂中分散的影响;同时,用尼龙11和酸配化聚丙烯共插层蒙脱土制备聚丙烯/蒙脱土纳米复合材料,并探讨其增容机理。
Resumo:
This paper reviews the recent progress made in the asymmetric synthesis on chiral catalysts in porous materials and discusses the effects of surface and pores on enantio-selectivity (confinement effect). This paper also summarizes various approaches of immobilization of the chiral catalysts onto surfaces and into pores of solid inorganic supports such as microporous and mesoporous materials. The most important reactions surveyed for the chiral synthesis in porous materials include epoxidation. hydrogenation, hydroformylation, Aldol and Diels-Alder reactions, etc. The confinement effect originated from the surfaces and the pores turns out to be a general phenomenon. which may make the enantioselectivity increase (positive effect) or decrease (negative effect). The confinement effect becomes more pronounced particularly when the bonding between the catalyst and the surface is more rigid and the pore size is tuned to a suitable range. It is proposed that the confinement in chiral synthesis is essentially a consequence of subtle change in transition states induced by weak-interaction in pores or on surfaces. It is also anticipated that the enantioselectivity could be improved by tuning the confinement effect based on the molecular designing of the pore/surface and the immobilized catalysts according to the requirements of chiral reactions.
Resumo:
Here, we demonstrated dimethyldioctadecylammonium bromide (DODAB), a cationic lipid, bilayer coated Au nanoparticles (AuNPs) could efficiently deliver two types of plasmid DNA into human embryonic kidney cells (HEK 293) in the presence of serum. The transfection efficiency of AuNPs was about five times higher than that of DODAB. The interaction of AuNPs with DNA was characterized with dye intercalation assay and agarose gel electrophoresis. The morphology of the complex of AuNPs with DNA was observed with scanning electron microscope (SEM). The intracellular trafficking of the complex was monitored with transmission electron microscope (TEM).
Resumo:
The stability of the complex of cationic lipid with nucleic acid, especially when facing serum, is crucial for the efficiency of gene delivery. Here, we demonstrated that the stability of the complex of didodecyldimethylammonium bromide (DDAB, a cationic lipid) with DNA in the presence of serum dramatically increased after coating DDAB onto the surface of the gold nanoparticles. The stability of the complex was demonstrated with dye intercalation assay, and agarose gel electrophoresis.
Resumo:
Water is an integral part of DNA, and the conserved water molecules at the binding sites can modulate drug binding to DNA or protein. We report here that anthracycline antitumor antibiotics, adriamycin (AM) and daunomycin (DM), binding to DNA is accompanied by different hydration changes, with AM binding resulting in the uptake of about twice as many water molecules as DM. These results indicate that water is playing an important role in drug binding to DNA.
Resumo:
The structural changes of genomic DNA upon interaction with small molecules have been studied in real time using dual-polarization interferometry (DPI). Native or thermally denatured DNA was immobilized on the silicon oxynitride surface via a preadsorbed poly(ethylenimine) (PEI) layer. The mass loading was similar for both types of DNA, however, native DNA formed a looser and thicker layer due to its rigidity, unlike the more flexible denatured DNA, which mixed with PEI to form a denser and thinner layer. Ethidium bromide (EtBr), a classical intercalator, induced the large thickness decrease and density increase of native DNA (double-stranded), but a slight increase in both the thickness and density of denatured DNA (partial single-stranded).
Resumo:
It is noteworthy to understand the details of interactions between antitumor drugs and DNA because the binding modes and affinities affect their antitumor activities. Here, The interaction of toluidine blue (TB), a potential antitumor drug for photodynamic therapy of tumor, with calf thymus DNA (ctDNA) was explored by UV-vis, fluorescence, circular dichroism (CD) spectroscopy, UV-rnelting method and surface-enhance Raman spectroscopy (SERS). The experimental results suggest that TB could bind to ctDNA via both electrostatic interaction and partial intercalation.
Resumo:
This work is focused on the factors influencing the intercalation of maleated polypropylene (PPMA) into organically modified montmorillonite (OMMT). Two kinds of PPMA were used to explore the optimal candidate for effective intercalation into OMMT. The grafting degree of maleic anhydride and the viscosity of PPMA have effects on the diffusion of polymer molecules. Moreover, the loading level of surfactant was varied to optimize the modification of montmorillonite because the appropriate loading level can provide a balance between interlayer distance and steric hindrance. The kind of surfactant changes the interaction between OMMT and PPMA, and accordingly the intercalation of PPMA is different, resulting in the discrepancy of the intercalation of PPMA.
Resumo:
[Ru(bpy)2dppz]2+ electrochemiluminescence (ECL) was studied, and it was used to investigate DNA interaction and develop a label-free ATP aptasensor for the first time. ECL of [Ru(bpy)2dppz]2+ is negligible in aqueous solution, and increases approximately 1000 times when [Ru(bpy)2dppz]2+ intercalates into the nucleic acid structure. The ECL switch behavior of [Ru(bpy)2dppz]2+ is ascribed to the intercalation that shields the phenazine nitrogens from the solvent and results in a luminescent excited state. The ECL switch by DNA was applied to investigate the interaction of [Ru(bpy)2dppz]2+ with herring sperm DNA. The calculated equilibrium constant (K) is 1.35 x 10(6) M(-1), and the calculated binding-site size (s) is 0.88 base pair, which is consistent with the reported values.
Resumo:
By reducing the attraction between the platelets of octaclecylammonium chloride modified montmorillonite (OMMT-C18) via pre-intercalation of maleated polypropylene (MAPP), OMMT-C18 was exfoliated in thermoplastic polyurethane (TPU) matrix during melt-mixing. Wide angle X-ray diffraction, transmission electron microscopy and thermogravimetric analysis were used to investigate the microstructure of TPU nanocomposites. Three factors (including introducing sequence, the kind and the content of MAPP) showed important effects on the dispersion degree of OMMT-C18 in TPU matrix. The results confirmed that the pre-intercalation of MAPP was necessary for the exfoliation of OMMT-C18; however, the role of MAPP in TPU nanocomposites was different from that in polypropylene nanocomposites.