177 resultados para inorganic nitrogen leaching
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The changes of NH3-N, NO3-N, NO2-N and TN/TP were studied during growth and non-growth season in 33 subtropical shallow lakes in the middle and lower reaches of the Yangtze River. There were significant positive correlations among all nutrient concentrations, and the correlations were better in growth season than in non-growth season. When TP > 0.1 mgL(-1), NH3-N increased sharply in non-growth season with increasing TP, and NO3-N increased in growth season but decreased in non-growth season with TP. These might be attributed to lower dissolved oxygen and low temperature in non-growth season of the hypereutrophic lakes, since nitrification is more sensitive to dissolved oxygen and temperature than anti nitrification. When 0.1 mgL(-1)> TP > 0.035 mgL(-1), TN and all kinds of inorganic nitrogen were lower in growth season than in non-growth season, and phytoplankton might be the vital regulating factor. When TP < 0.035 mgL(-1), inorganic nitrogen concentrations were relatively low and NH3-N, NO2-N had significant correlations with phytoplankton, indicating that NH3-N and NO2-N might be limiting factors to phytoplankton. In addition, TN/TP went down with decline in TIP concentration, and TN and inorganic nitrogen concentrations were obviously lower in growth season than in non-growth season, suggesting that decreasing nitrogen (especially NH3-N and NO3-N) was an important reason for the decreasing TN/TP in growth season. The ranges of TN/TP were closely related to trophic level in both growth and non-growth seasons, and it is apparent that in the eutrophic and hypertrophic state the TN/TP ratio was obviously lower in growth season than in non-growth season. The changes of the TN/TP ratio were closely correlated with trophic levels, and both declines of TN in the water column and TP release from the sediment were important factors for the decline of the TN/TP ratio in growth season.
Resumo:
High levels of available nitrogen (N) and carbon (C) have the potential to increase soil N and C mineralization We hypothesized that with an external labile C or N supply alpine meadow soil will have a significantly higher C mineralization potential and that temperature sensitivity of C mineralization will increase To test the hypotheses an incubation experiment was conducted with two doses of N or C supply at temperature of 5 15 and 25 C Results showed external N supply had no significant effect on CO2 emission However external C supply increased CO2 emission Temperature coefficient (Q(10)) ranged from 113 to 1 29 Significantly higher values were measured with C than with N addition and control treatment Temperature dependence of C mineralization was well-represented by exponential functions Under the control CO2 efflux rate was 425 g CO2-Cm-2 year(-1) comparable to the in situ measurement of 422 g CO2-Cm-2 year(-1) We demonstrated if N is disregarded microbial decomposition is primarily limited by lack of labile C It is predicted that labile C supply would further increase CO2 efflux from the alpine meadow soil (C) 2010 Elsevier Masson SAS All rights reserved
Resumo:
Sediments and surface water were sampled in a tide flat in the Huiquan Bay, Qingdao, China in January 2004 to simulate the exchange of NH4-N/NO3-N/PO43- between sediments and surface water. A working system was designed with which samples were shaken at 60, 120 and 150 revolutions per minute (r/min). Experiment results show that NH4-N concentration in water at shaking rate of 60 r/min decreased gradually, while at 120 r/min increased gradually. In resuspension, fine-grained sediments contributed most NH4-N to the seawater, followed by medium-grained and coarse-grained sediments. The NO3-N concentration in water had a negative relation, with the shaking rate; the medium-grained sediments contributed more NO3-N to seawater than the coarse- and fine-grained sediments. The PO43- concentration is positively related with the shaking rate, the fine-grained sediments were the main N and P contributor to the seawater, followed by medium- and coarse-grained sediments.
Resumo:
本研究采用室外盆栽试验,模拟运动场坪床结构,研究不同氮肥种类、不同施氮频率、施氮和降雨时间间隔对草地早熟禾草坪质量、草坪生长和无机氮淋洗的影响,并探讨在北京地区气候条件下,草坪在不同氮肥管理措施下的氮素去向及环境风险。主要结论如下: 1. 氮肥种类对草坪质量和草坪生长有显著影响。试验前期(春季),草坪颜色和密度质量、草坪草生长速度和草屑全氮含量的排序为尿素 > CU3M(自研包膜尿素)> IBDU(进口缓释肥),而试验后期(秋季)则为CU3M = IBDU > 尿素。草坪合格颜色质量持续时间和成坪速度的排序为尿素 > CU3M > IBDU。在新建草坪选择缓释肥进行早春施肥时,应混施一定比例的速效肥。 2. 施氮频率对草坪外观质量评分、草坪生长速度、草屑总生物量、草屑全氮含量和根系分布状况有显著影响。U6处理的草坪合格颜色质量持续时间最长,增加施氮频率没有降低新建草坪生长速度和草屑全氮含量的波动幅度。 3. 夏季(6~8月)渗漏液体积占全年的比例最高,为75.0%~82.4%。新建草坪初期的淋洗风险较大,渗漏液硝态氮浓度在第1次超过10 mg N•L-1,尿素分6次施用可降低这次的渗漏液硝态氮浓度。在合理施氮量内,草坪成熟后的无机氮淋洗量很小,且草坪对雨水中的无机氮有吸收和过滤作用。 4. 春季施用氮肥的吸收利用率为48.0%~72.6%,草屑吸收量最高,占38.5%~48.7%,地上部吸收量占19.6%~22.1%,根系吸收量在7.3%以下。施肥处理的无机氮淋洗损失量仅为0.23~0.42 g N•m-2,与CK无显著差异,草地早熟禾12 g N•m-2的年施氮量对环境的风险很小。 5. 初秋施氮5 g N•m-2,可以保持草地早熟禾秋季的良好颜色和密度质量,草坪草氮素吸收利用率高达87.4%~99.7%,其中草屑带走量占24.3%~34.2%,地上部吸收量占43.3%~59.6%,根系吸收量占14.2%~19.1%。 6. 施氮和模拟降雨的时间间隔对渗漏液硝态氮浓度有显著影响,间隔6 d和9 d模拟降雨后的渗漏液硝态氮浓度最高,显著高于间隔3 d和12 d模拟降雨的结果。初秋合理施氮的渗漏液硝态氮浓度在1.0 mg N•L-1 以下,环境风险较小。
Resumo:
Budgets and dynamics of nitrogen and phosphorus in Lake Donghu were investigated from Oct. 1997 to Sept. 1999. The water residence time was estimated to be 89 days in 1997-1998 and 124 days in 1998-1999. The total external loadings were 53 g N m(-2) yr(-1) and 3.2 g P m(-2) yr(-1) in 1997-1998, and 42 g N m(-2) yr(-1) and 3.1 g P m(-2) yr(-1) in 1998-1999. On average, about 80% of nitrogen and phosphorus input was from sewage outlets, while the rest was from land runoff and precipitation. Ammonium ion was the most abundant form of inorganic nitrogen in the sewage. The nutrient output was mainly through water outflow and fish catch. The percentages of nutrients in fish were estimated to be 7.8%-11.2% for nitrogen and 47.6%- 49.6% for phosphorus. Lake Donghu has a very high nutrient retention (63% for nitrogen and 79% for phosphorus) mainly due to its closure and long water residence time. Sedimentation is an important nutrient retention mechanism in this lake. Using mass balance method, we estimated that denitrification of Lake Donghu involves about 50% of the retained nitrogen. Lake Donghu is rich in inorganic nitrogen and phosphorus and showed great seasonal variation.
Resumo:
During late spring and early summer of 2005, large-scale (> 15 000 km(2)), mixed dinoflagellate blooms developed along the the coast of the East China Sea. Karenia mikimotoi was the dominant harmful algal bloom species in the first stage of the bloom (late May) and was succeeded by Prorocentrum donghaiense approximately 2 wk later. Samples were collected from different stations along both north-south and west-east transects, from the Changjiang River estuary to the south Zhejiang coast, during 3 cruises of the Chinese Ecology and Oceanography of Harmful Algal Blooms Program, before and during the bloom progression. Nitrogen isotope tracer techniques were used to measure rates of NO3-, NH4+, urea, and glycine uptake during the blooms. High inorganic nitrogen (N), but low phosphorus (P) loading from the Changjiang River led to high dissolved inorganic N:dissolved inorganic P ratios in the sampling area and indicate the development of P limitation. The rates of N-15-uptake experiments enriched with PO43- were enhanced compared to unamended samples, suggesting P limitation of the N-uptake rates. The bloom progression was related to the change in availability of both organic and inorganic N and P. Reduced N forms, especially NH4+, were preferentially taken up during the blooms, but different bloom species had different rates of uptake of organic N substrates. K mikimotoi had higher rates of urea uptake, while P. donghaiense had higher rates of glycine uptake. Changes in the availability of reduced N and the ratios of N:P in inorganic and organic forms were suggested to be important in the bloom succession. Nutrient ratios and specific uptake rates of urea were similar when compared to analogous blooms on the West Florida Shelf.
Resumo:
The distributions of different forms of nitrogen in the surface sediments of the southern Huanghai Sea are different and affected by various factors. The contents of IEF-N, SOEF-N and TN gradually decrease eastward, and those of SAEF-N northward, while those of WAEF-N westward. Around the seaport of the old Huanghe (Yellow) River, the contents of both SOEF-N and TN are the highest. Among all the factors, the content of fine sediment is the predominant factor to affect the distributions of different forms of nitrogen. The contents of IEF-N, SOEF-N, and TN have visibly positive correlation with the content of fine sediments, and the correlative coefficient is 0.68, 0.58 and 0.71 respectively, showing that the contents of the three forms of nitrogen increase with those of fine sediments. The content of WAEF-N is related to that of fine sediments to a certain extent, with a correlative coefficient of 0.35; while the content of SAEF-N is not related to that of fine sediments, showing that the content of SAEF-N is not controlled by fine grain-size fractions of sediments. In addition, the distributions of different forms of nitrogen are also interacted one another, and the contents of IEF-N and SOEF-N are obviously affected by TN, while those of inorganic nitrogen (WAEF-N, SAEF-N and IEF-N) are not affected by SOEF-N and TN obviously, although they are interacted each other.