13 resultados para informed user
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
IEEE Computer Society
Resumo:
Pen-based user interface has become a hot research field in recent years. Pen gesture plays an important role in Pen-based user interfaces. But it’s difficult for UI designers to design, and for users to learn and use. In this purpose, we performed a research on user-centered design and recognition pen gestures. We performed a survey of 100 pen gestures in twelve famous pen-bases systems to find problems of pen gestures currently used. And we conducted a questionnaire to evaluate the matching degree between commands and pen gestures to discover the characteristics that a good pen gestures should have. Then cognition theories were applied to analyze the advantages of those characteristics in helping improving the learnability of pen gestures. From these, we analyzed the pen gesture recognition effect and presented some improvements on features selection in recognition algorithm of pen gestures. Finally we used a couple of psychology experiments to evaluate twelve pen gestures designed based on the research. It shows those gestures is better for user to learn and use. Research results of this paper can be used for designer as a primary principle to design pen gestures in pen-based systems.
Resumo:
Interactive intention understanding is important for Pen-based User Interface (PUI). Many works on this topic are reported, and focus on handwriting or sketching recognition algorithms at the lexical layer. But these algorithms cannot totally solve the problem of intention understanding and can not provide the pen-based software with high usability. Hence, a scenario-based interactive intention understanding framework is presented in this paper, and is used to simulate human cognitive mechanisms and cognitive habits. By providing the understanding environment supporting the framework, we can apply the framework to the practical PUI system. The evaluation of the Scientific Training Management System for the Chinese National Diving Team shows that the framework is effective in improving the usability and enhancing the intention understanding capacity of this system.
Resumo:
We present a new technique called‘Tilt Menu’ for better extending selection capabilities of pen-based interfaces.The Tilt Menu is implemented by using 3D orientation information of pen devices while performing selection tasks.The Tilt Menu has the potential to aid traditional onehanded techniques as it simultaneously generates the secondary input (e.g., a command or parameter selection) while drawing/interacting with a pen tip without having to use the second hand or another device. We conduct two experiments to explore the performance of the Tilt Menu. In the first experiment, we analyze the effect of parameters of the Tilt Menu, such as the menu size and orientation of the item, on its usability. Results of the first experiment suggest some design guidelines for the Tilt Menu. In the second experiment, the Tilt Menu is compared to two types of techniques while performing connect-the-dot tasks using freeform drawing mechanism. Results of the second experiment show that the Tilt Menu perform better in comparison to the Tool Palette, and is as good as the Toolglass.
Resumo:
Pen-based user interface (PUI) has drawn significant interest, owing to its intuitiveness and convenience. While much of the research focuses on the technology, the usability of a PUI has been relatively low since human factors have not been considered sufficiently. Scenario-centric designs are ideal ways to improve usability. However, such designs possess some problems in practical use. To cope with these design issues, the concept of “interface scenarios” is proposed in to facilitate the interface design, and to help users understand the interaction process in such designs. The proposed scenario-focused development method for PUI is coupled with a practical application to show its effectiveness and usability.
Resumo:
当利用扫描隧道显微镜(SPM)作为一种纳米操作工具时,由于其缺乏实时的传感器信息反馈,而大大阻碍了它的广泛应用.利用超媒体人机交互接口可以解决这个问题.在纳米操作过程中,超媒体接口不但可以为操作者提供可实时更新的仿真操作场景,还可以通过力反馈手柄让操作者实时地感受到探针受到的三维纳米操作力.除此之外,操作者还可以通过该手柄直接控制探针的三维运动.最后在聚碳酸酯上进行了超媒体人机接口的纳米刻画实验.实验结果验证了该系统的有效性和效率.