4 resultados para independent learning

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the use of independent component analysis (ICA) for speech feature extraction in digits speech recognition systems.We observe that this may be true for a recognition tasks based on geometrical learning with little training data. In contrast to image processing, phase information is not essential for digits speech recognition. We therefore propose a new scheme that shows how the phase sensitivity can be removed by using an analytical description of the ICA-adapted basis functions via the Hilbert transform. Furthermore, since the basis functions are not shift invariant, we extend the method to include a frequency-based ICA stage that removes redundant time shift information. The digits speech recognition results show promising accuracy, Experiments show method based on ICA and geometrical learning outperforms HMM in different number of train samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The accurate recognition of cancer subtypes is very significant in clinic. Especially, the DNA microarray gene expression technology is applied to diagnosing and recognizing cancer types. This paper proposed a method of that recognized cancer subtypes based on geometrical learning. Firstly, the cancer genes expression profiles data was pretreated and selected feature genes by conventional method; then the expression data of feature genes in the training samples was construed each convex hull in the high-dimensional space using training algorithm of geometrical learning, while the independent test set was tested by the recognition algorithm of geometrical learning. The method was applied to the human acute leukemia gene expression data. The accuracy rate reached to 100%. The experiments have proved its efficiency and feasibility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the use of independent component analysis (ICA) for speech feature extraction in digits speech recognition systems. We observe that this may be true for recognition tasks based on Geometrical Learning with little training data. In contrast to image processing, phase information is not essential for digits speech recognition. We therefore propose a new scheme that shows how the phase sensitivity can be removed by using an analytical description of the ICA-adapted basis functions. Furthermore, since the basis functions are not shift invariant, we extend the method to include a frequency-based ICA stage that removes redundant time shift information. The digits speech recognition results show promising accuracy. Experiments show that the method based on ICA and Geometrical Learning outperforms HMM in a different number of training samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the use of independent component analysis (ICA) for speech feature extraction in digits speech recognition systems. We observe that this may be true for recognition tasks based on Geometrical Learning with little training data. In contrast to image processing, phase information is not essential for digits speech recognition. We therefore propose a new scheme that shows how the phase sensitivity can be removed by using an analytical description of the ICA-adapted basis functions. Furthermore, since the basis functions are not shift invariant, we extend the method to include a frequency-based ICA stage that removes redundant time shift information. The digits speech recognition results show promising accuracy. Experiments show that the method based on ICA and Geometrical Learning outperforms HMM in a different number of training samples.