4 resultados para impact du changement
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
We explored the deposition of hydrogenated amorphous silicon (a-Si: H) using trisilane (Si3H8) as a gas precursor in a radiofrequency plasma enhanced chemical vapour deposition process and studied the suitability of this material for photovoltaic applications. The impact of hydrogen dilution on the deposition rate and microstructure of the films is systematically examined. Materials deposited using trisilane are compared with that using disilane (Si2H6). It is found that when using Si3H8 as the gas precursor the deposition rate increases by a factor of similar to 1.5 for the same hydrogen dilution (R = [H-2]/[Si3H8] or [H-2]/[Si2H6])- Moreover, the structural transition from amorphous to nanocrystalline occurs at a higher hydrogen dilution level for Si3H8 and the transition is more gradual as compared with Si2H6 deposited films. Single-junction n-i-p a-Si: H solar cells were prepared with intrinsic layers deposited using Si3H8 or Si2H6. The dependence of open circuit voltage (V-oc) on hydrogen dilution was investigated. V-oc greater than 1 V can be obtained when the i-layers are deposited at a hydrogen dilution of 180 and 100 using Si3H8 and Si2H6, respectively.
Resumo:
This paper reports the impact of a wide bandgap p-type hydrogenated nanocrystalline silicon (nc-Si:H) on the performances of hydrogenated amorphous silicon (a-Si:H) based solar cells. The player consists of nanometer-sized Si crystallites and has a wide effective bandgap determined mainly by the quantum size-confinement effect (QSE). By incorporation of this p-layer into the devices we have obtained high performances of a-Si:H top solar cells with V-infinity=1.045 V and FF=70.3 %, and much improved mid and bottom a-SiGe:H cells, deposited on stainless steel (SS) substrate. The effects of the band-edge mismatch at the p/i-interface on the I-V characteristics of the solar cells arc discussed on the bases of the density-functional approach and the AMPS model.
Resumo:
This paper reports the impact of a wide bandgap p-type hydrogenated nanocrystalline silicon (nc-Si:H) on the performances of hydrogenated amorphous silicon (a-Si:H) based solar cells. The player consists of nanometer-sized Si crystallites and has a wide effective bandgap determined mainly by the quantum size-confinement effect (QSE). By incorporation of this p-layer into the devices we have obtained high performances of a-Si:H top solar cells with V-infinity=1.045 V and FF=70.3 %, and much improved mid and bottom a-SiGe:H cells, deposited on stainless steel (SS) substrate. The effects of the band-edge mismatch at the p/i-interface on the I-V characteristics of the solar cells arc discussed on the bases of the density-functional approach and the AMPS model.
Resumo:
The impact of burrows constructed by plateau zokors Myospalax fontanierii (Milne-Edwards, 1867) on alpine meadow vegetation on the Qinghai-Xizang (Tibetan) plateau was investigated. Plant samples taken from quadrats directly over active zokor burrows, back-filled burrows, adjacent burrow controls, and random sites from a field, in which no burrows or mounds occurred were compared. The biomass of plants (below- and above-ground) directly over shallow active burrows was significantly lower than on control plots. This reduction in biomass was not significantly different than that between deep active burrows and control plots. There were no significant differences between above- and below-ground plant biomass on areas perpendicular to active burrows when compared to random sites. Back-filling soil in burrows could promote the growth of above-ground monocotyledonous plants. However, the burrowing activities of zokors had a negative effect on biomass of dicotyledonous plants.