20 resultados para immobilized cells

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, bioconversion of trans-cinnamic acid(t-Ca)to L-phenylalanine (L-phe) has been investigated by using immobilized yeast cells with induced L-phe Ammonia-lyase(PAL, EC.4.3.1.5) as biocatalysts. The contents are the following. (1) Thirty strains of yeasts, including two genera (Rhodotorula, Sporobolomyces), six species (R. glutinis R. minuta,R.rubra,R.sineses,R.roseus and S.salmonicolor)were screened for their ability to converse the substrates, t-Ca and ammonia, to the product, L-phe, by using yeast cells as biocatalyst, and primary evaluation for PAL activity of the selected strains was investigated. From the results of the screening experiments, it was found that 22 strains were able to produce L-phe from t-Ca with the range of conversion yield from 2% to 67%. Studies on PAL formation time course during cultivation show that the maximum PAL activity of several different strains ranges from 2.3 to 14.4×10-3U/mg cell dry weight. The biomass of tested strains at their maximum enzyme activity is also greatly varied. (2)One of the selected strains, R. rubra as 2.166, was used for immobilized cells as biocatalysts to produce L-phe. The optimum conversion conditions and effective stablization agents were investigated. The results shown that polyacrylamide gel was chosen as a suitable matrix for immobilization of the yeast cells, and it can retain 88% of the PAL activity in the reverse direction at the following reactive conditions: [t-Ca]: 34mM. [NH4OH]: 6.OM.PH10.00, temperature: 30℃. (3) The effects of various kinds of effectors on the production of L-phe were also examined. Membrane permeabilizing agents can stimulate L-phe synthesis, but make the stability of PAL decline greatly. Polyalchoholic agents and glutamic acid were very effective for the stabilization of PAL. At the presence of glutamic acid (5%), the half life of L-phe productivity with the immobilized cells was extended to 192 hours, which was much higher than most of that having been reproted, while the half life of resting cells was only about 15 hours. (4) Use of initial velocity studies on the kinetics of enzyme-catalized reaction indicated that the apparent Km value was 13.0mM for the immobilized cells, and 4.8mM for the resting cells. Thermostability of the immobilized cells was better than the resting cells. Fluid bed bioreactor is more effective than batch bioreator in prolonging the thermostability of the biocatalysts. (5) CGA- 688 resin column chromatographic procedure was employed in the isolation and purification of L-phe, t-Ca and other substances from the reactire mixture. (6) Preparative-scale production of L-phe on a level of gram amount by immobilized cells from the culture broth of R. rubra AS2.166 allowed for the conversion yield with 30%. The characteristic physico-chemical criteria (including melting point, optical activity, elements analysis, IR, NMR) are the same with the standard L-phe. 本文报告了利用诱导的苯丙氨酸解氨酶 (PAL.EC.4.3.1.5)催化反式肉桂酸(t-Ca)氨加 成制备L-苯丙氨酸(L-phe)的研究,主要内容为:(1) 我们搜集了三十株酵母菌株,利用全细胞转化t-Ca生成L-phe的能力进行了直 接筛选,并对其PAL活性水平进行了初步评估研究。研究结果表明,其中22株酵母具有转化t-Ca生产L-phe的能力,它们包括 Rhodotorula glutinis,R.rubra, R.sineses 和Sporobolomyces roseus 的菌株,转化率在2-67%。细胞生长和PAL形成过程的研究 表明,不同菌株PAL最大活力在2.3-14.4×10-3U/mg 细胞干重,达到最大PAL活性时各株酵母的生长情况也极不一致。(2) 利用筛 选出的一株深红酵母R.rubra AS2.166 作为供试菌株,研究了细胞固定化条件下生物转化的最适条件及PAL在固定化条件下的稳定 性。结果表明以聚丙烯酰胺凝胶包埋法较为理想,能使细胞合成L-phe活力保持88%,最适t-Ca浓度为34mM,最适NH4OH浓度为6M,最 适PH10.0,最适温度45℃。(3) 多种效应物对L-phe 合成的影响研究表明:表面活性剂能刺激L-phe的合成,但使PAL稳定性下降。 多羟基化合物及Glu对PAL的稳定十分有效在有Glu存在下,能使固定化细胞合成L-phe的半寿期达192小时左右,高于大部分现已报 导的固定化结果。(4) 用初速度法研究了深红酵母AS2.166中PAL的酶促反应特征,测得固定化细胞对t-Ca的表观米氏常数Km为 13.0mM,全细胞为4.8mM,细胞固定后热稳定性提高。(5) 建立了适合低浓度分离纯化产物与底物的聚苯乙烯大孔树脂柱层析技术 ,能使L-phe与t-Ca及产物混合物中其它成分有效分开。(6) 利用固定化的R.rubra AS2.166细胞所做的制备实验能够使L-phe的产 率达到30%左右,其主要的理化指标(包括熔点、比旋光度、元素分析、IR、NMR等)与标准L-phe一致。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Modeling of the gel-immobilized cell system requires accurate measurement of diffusion coefficients. Three methods of the quasi-steady-state (QSS) method, the time-lag (TL) method and a variant quasi-steady-state (VQSS) method were critically assessed and compared for the evaluation of diffusivities using the diffusion cell technique. Experimental data from our laboratory were used for the analysis of the influence of crucial theoretical assumptions not being fulfilled in each method. The results highlighted a risk in obtaining highly variable diffusion coefficients by not validating the QSS and the accuracy of the measurements. In the TL method, the estimation of diffusivities based on the plot intercept that was mostly used in the literature, results in a many fold lower value when compared to that based on the plot slope. The comparison with the QSS and VQSS methods confirmed similar diffusivity obtained by the TL method based on the plot slope. It thus suggested that the correct estimation of diffusivities by the TL method could be based on the plot slope only. Furthermore, the errors associated with the solute mass in the gel, the sample withdrawal and the non-negligible concentration changes in the chambers were also discussed. It is concluded that diffusion cell technique has to be employed cautiously for a correct evaluation of diffusivities. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell adhesion is crucial to many biological processes, such as inflammatory responses, tumor metastasis and thrombosis formation. Recently a commercial surface plasmon resonance (SPR)-based BIAcore biosensor has been extended to determine cell binding mediated by surface-bound biomolecular interactions. How such cell binding is quantitatively governed by kinetic rates and regulating factors, however, has been poorly understood. Here we developed a novel assay to determine the binding kinetics of surface-bound biomolecular interactions using a commercial BIAcore 3000 biosensor. Human red blood cells (RBCs) presenting blood group B antigen and CM5 chip bearing immobilized anti-B monoclonal antibody (mAb) were used to obtain the time courses of response unit, or sensorgrams, when flowing RBCs over the chip surface. A cellular kinetic model was proposed to correlate the sensorgrams with kinetic rates. Impacts of regulating factors, such as cell concentration, flow duration and rate, antibody-presenting level, as well as pH value and osmotic pressure of suspending medium were tested systematically, which imparted the confidence that the approach can be applied to kinetic measurements of cell adhesion mediated by surface-bound biomolecular interactions. These results provided a new insight into quantifying cell binding using a commercial SPR-based BIAcore biosensor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since protein phosphorylation is a dominant mechanism of information transfer in cells, there is a great need for methods capable of accurately elucidating sites of phosphorylation. In recent years mass spectrometry has become an increasingly viable alternative to more traditional methods of phosphorylation analysis. The present study used immobilized metal affinity chromatography (IMAC coupled with a linear ion trap mass spectrometer to analyze phosphorylated proteins in mouse liver. A total of 26 peptide sequences defining 26 sites of phosphorylation were determined. Although this number of identified phosphoproteins is not large, the approach is still of interest because a series of conservative criteria were adopted in data analysis. We note that, although the binding of non-phosphorylated peptides to the IMAC column was apparent, the improvements in high-speed scanning and quality of MS/MS spectra provided by the linear ion trap contributed to the phosphoprotein identification. Further analysis demonstrated that MS/MS/MS analysis was necessary to exclude the false-positive matches resulting from the MS/MS experiments, especially for multiphosphorylated peptides. The use of the linear ion trap considerably enabled exploitation of nanoflow-HPLC/MS/MS, and in addition MS/MS/MS has great potential in phosphoproteome research of relatively complex samples. Copyright (C) 2004 John Wiley Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel electrochemiluminescence (ECL) aptasensor was proposed for sensitive and cost-effective detection of the target thrombin adopted an aptamer-based sandwich format. To detect thrombin, capture aptamers; labeled with gold nanoparticles (AuNPs) were first immobilized onto the thio-silanized ITO electrode surface through strong Au-S bonds. After catching the target thrombin, signal aptamers; tagged with ECL labels were attached to the assembled electrode surface. As a result, an AuNPs-capture-aptamer/thrombin/ECL-tagged signal-aptamer sandwich type was formed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, organic-inorganic hybrid material, which is composed of silica and the grafting copolymer of poly (vinyl alcohol) and 4-vinylpyridine (PVA-g-P(4-VP)), was employed to immobilize Trichosporon cutaneum strain 2.570 cells. Cells entrapped into the hybrid material were found to keep a long-term viability. The mechanism of such a long-term viability was investigated by using confocal laser scanning microscopy (CLSM). Our studies revealed that arthroconidia produced in the extracellular material might play an important role in keeping the long-term viability of the immobilized microorganism. After the arthroconidia were activated, an electrochemical biochemical oxygen demand (BOD) sensor based on cell/hybrid material-modified supporting membrane was constructed for verifying the proposed mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mammalian cells subjected to conditions of spaceflight and the microgravity environment ofspace; manifest a number of alterations in structure and function. Among the most notable changes incells flown on the Space Shuttle are reduced growth activation and decline in growth rate in the totalpopulation. Other changes include chromosomal aberrations, inhibited locomotion, alteredcytokine production, changes in PKC distribution, and increased apoptos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A visual observation of liquid-gas two-phase flow in anode channels of a direct methanol proton exchange membrane fuel cells in microgravity has been carried out in a drop tower. The anode flow bed consisted of 2 manifolds and 11 parallel straight channels. The length, width and depth of single channel with rectangular cross section was 48.0 mm, 2.5 mm and 2.0 mm, respectively. The experimental results indicated that the size of bubbles in microgravity condition is bigger than that in normal gravity. The longer the time, the bigger the bubbles. The velocity of bubbles rising is slower than that in normal gravity because buoyancy lift is very weak in microgravity. The flow pattern in anode channels could change from bubbly flow in normal gravity to slug flow in microgravity. The gas slugs blocked supply of reactants from channels to anode catalyst layer through gas diffusion layer. When the weakened mass transfer causes concentration polarization, the output performance of fuel cells declines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface plasmon resonance (SPR) technology and the Biacore biosensor have been widely used to measure the kinetics of biomolecular interactions in the fluid phase. In the past decade, the assay was further extended to measure reaction kinetics when two counterpart molecules are anchored on apposed surfaces. However, the cell binding kinetics has not been well quantified. Here we report development of a cellular kinetic model, combined with experimental procedures for cell binding kinetic measurements, to predict kinetic rates per cell. Human red blood cells coated with bovine serum albumin and anti-BSA monoclonal antibodies (mAbs) immobilized on the chip were used to conduct the measurements. Sensor-grams for BSA-coated RBC binding onto and debinding from the anti-BSA mAb-immobilized chip were obtained using a commercial Biacore 3000 biosensor, and analyzed with the cellular kinetic model developed. Not only did the model fit the data well, but it also predicted cellular on and off-rates as well as binding affinities from curve fitting. The dependence of flow duration, flow rate, and site density of BSA on binding kinetics was tested systematically, which further validated the feasibility and reliability of the new approach. Crown copyright (c) 2008 Published by Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell adhesion, mediated by specific receptor-ligand interactions, plays an important role in biological processes such as tumor metastasis and inflammatory cascade. For example, interactions between beta(2)-integrin ( lymphocyte function-associated antigen-1 and/or Mac-1) on polymorphonuclear neutrophils (PMNs) and ICAM-1 on melanoma cells initiate the bindings of melanoma cells to PMNs within the tumor microenvironment in blood flow, which in turn activate PMN-melanoma cell aggregation in a near-wall region of the vascular endothelium, therefore enhancing subsequent extravasation of melanoma cells in the microcirculations. Kinetics of integrin-ligand bindings in a shear flow is the determinant of such a process, which has not been well understood. In the present study, interactions of PMNs with WM9 melanoma cells were investigated to quantify the kinetics of beta(2)-integrin and ICAM-1 bindings using a cone-plate viscometer that generates a linear shear flow combined with a two-color flow cytometry technique. Aggregation fractions exhibited a transition phase where it first increased before 60 s and then decreased with shear durations. Melanoma-PMN aggregation was also found to be inversely correlated with the shear rate. A previously developed probabilistic model was modified to predict the time dependence of aggregation fractions at different shear rates and medium viscosities. Kinetic parameters of beta(2)-integrin and ICAM-1 bindings were obtained by individual or global fittings, which were comparable to respectively published values. These findings provide new quantitative understanding of the biophysical basis of leukocyte-tumor cell interactions mediated by specific receptor-ligand interactions under shear flow conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New methods of surface modification of transparent silicone substrate were developed, and a new set of cell culture devices that provide homogeneous substrate strain was designed. Using the new device, effects of cyclic substrate strain on bone marrow mesenchymal stem cells(MSCs) were studied. It was found that cyclic strain influenced proliferation and differentiation of bone marrow MSCs in different ways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A visual observation of liquid-gas two-phase flow in anode channels of a direct methanol proton exchange membrane fuel cells in microgravity has been carried out in a drop tower. The anode flow bed consisted of 2 manifolds and 11 parallel straight channels. The length, width and depth of single channel with rectangular cross section was 48.0 mm, 2.5 mm and 2.0 mm, respectively. The experimental results indicated that the size of bubbles in microgravity condition is bigger than that in normal gravity. The longer the time, the bigger the bubbles. The velocity of bubbles rising is slower than that in normal gravity because buoyancy lift is very weak in microgravity. The flow pattern in anode channels could change from bubbly flow in normal gravity to slug flow in microgravity. The gas slugs blocked supply of reactants from channels to anode catalyst layer through gas diffusion layer. When the weakened mass transfer causes concentration polarization, the output performance of fuel cells declines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micro-fabrication technology has substantial potential for identifying molecular markers expressed on the surfaces of tissue cells and viruses. It has been found in several conceptual prototypes that cells with such markers are able to be captured by their antibodies immobilized on microchannel substrates and unbound cells are flushed out by a driven flow. The feasibility and reliability of such a microfluidic-based assay, however, remains to be further tested. In the current work, we developed a microfluidic-based system consisting of a microfluidic chip, an image grabbing unit, data acquisition and analysis software, as well as a supporting base. Specific binding of CD59-expressed or BSA-coupled human red blood cells (RBCs) to anti-CD59 or anti-BSA antibody-immobilized chip surfaces was quantified by capture efficiency and by the fraction of bound cells. Impacts of respective flow rate, cell concentration, antibody concentration and site density were tested systematically. The measured data indicated that the assay was robust. The robustness was further confirmed by capture efficiencies measured from an independent ELISA-based cell binding assay. These results demonstrated that the system developed provided a new platform to effectively quantify cellular surface markers effectively, which promoted the potential applications in both biological studies and clinical diagnoses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamic properties of proteins have crucial roles in understanding protein function and molecular mechanism within cells. In this paper, we combined total internal reflection fluorescence microscopy with oblique illumination fluorescence microscopy to observe directly the movement and localization of membrane-anchored green fluorescence proteins in living cells. Total internal reflect illumination allowed the observation of proteins in the cell membrane of living cells since the penetrate depth could be adjusted to about 80 nm, and oblique illumination allowed the observation of proteins both in the cytoplasm and apical membrane, which made this combination a promising tool to investigate the dynamics of proteins through the whole cell. Not only individual protein molecule tracks have been analyzed quantitatively but also cumulative probability distribution function analysis of ensemble trajectories has been done to reveal the mobility of proteins. Finally, single particle tracking has acted as a compensation for single molecule tracking. All the results exhibited green fluorescence protein dynamics within cytoplasm, on the membrane and from cytoplasm to plasma membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macrophage differentiation antigen associated with complement three receptor function (Mac-1) belongs to beta(2) subfamily of integrins that mediate important cell-cell and cell-extracellular matrix interactions. Biochemical studies have indicated that Mac-1 is a constitutive heterodimer in vitro. Here, we detected the heterodimerization of Mac-1 subunits in living cells by means of two fluorescence resonance energy transfer (FRET) techniques (fluorescence microscopy and fluorescence spectroscopy) and our results demonstrated that there is constitutive heterodimerization of the Mac-1 subunits and this constitutive heterodimerization of the Mac-1 subunits is cell-type independent. Through FRET imaging, we found that heterodimers of Mac-1 mainly localized in plasma membrane, perinuclear, and Golgi area in living cells. Furthermore, through analysis of the estimated physical distances between cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) fused to Mac-1 subunits, we suggested that the conformation of Mac-1 subunits is not affected by the fusion of CFP or YFP and inferred that Mac-1 subunits take different conformation when expressed in Chinese hamster ovary (CHO) and human embryonic kidney (HEK) 293T cells, respectively. (c) 2006 Elsevier Inc. All rights reserved.