61 resultados para ilmenite oxide materials

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The YAG crystal codoped with Yb3+ and Tm3+ has been grown by Czochralski (Cz) method. The crystal structure of the crystal has been determined by X-ray diffraction analysis. The absorption and emission spectra of Yb,Tm:YAG crystal at room temperature have also been studied. The emission cross-sections have been calculated by Fuechtbauer-Ladenburg formula and reciprocity method. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

采用水热法结合后续热处理制备了一系列纯的和稀土离子(Eu3+,Dy3+)掺杂的黔具有纳米/微米结构的无机氧化物材料,包括YB03、姚03、Ga203和硅基MCM一攀41介孔分子筛体系。研究了这些体系的水热产物的晶体形貌、结构以及它们的生乖~一_长机理,并通过进一步热处理得到了保持水热产物纳米/微米结构形貌的发光材料,报道了以上各个体系材料的光致发光性能。一把姚03和Eu203粉末直接加入H3Bo3水溶液中,调节pH一1一4,在180一270夸_少℃水热处理得到了具有vaterite结构的YBo3:Eu3+晶体。xRD和FEsEM结果证明一扭03:E矿"晶体是由厚度小于50nm的纳米晶片构成的花状和猴头菇状的微米级晶丫体。水热温度提高时纳米晶片的厚度没有增加,形貌也不变,但是结晶度和发光一强度有所提高。pH值对纳米晶片之间的距离、角度和晶片数量有影响。pH低时,纳米晶片更多且包裹得更紧,形成了猴头菇状;而pH高时,晶片分得更开一些呈花朵状。这与pH值低时结晶成核较快较多有关。YB03:E矿+水热和固相法样品在24Onm激发下的发光谱峰位相同。但水热样品比固相法样品具有较高的红橙比[Eu3+:I(,D。一7F2)/I(SD。一7FI)],增加了12一37%。在24oC下制备的花03:Eu3+水热样品具有最大的结晶度和发光强度。报道了三种晶形调节剂对水热晶体形貌的影响结果。硝酸钻水溶液用氨水调节至pH一8一n,200oC下水热处理24小时,产物经xRD确定是单斜晶系的碱式硝酸盐叽O(0H)9困03)。FEsEM观察发现产物是一种具有几_三叶形截面的棱柱。改变合成条件可以调节三叶形棱柱的尺寸。增加氨水量时,PH从8调到n后,棱柱直径可从微米级调节到亚微米级,即从3一5林m左右下降到200一300纳米,同时长径比也有所增加,从pH一8的5增加到pH=n的10。调节机制可解释为较高的pH条件下结晶成核作用进行较快,形成了更多的晶核。三叶形棱柱的生长机理是、O(OH)9困03)的晶核依靠内在的趋势长成棒状纳米粒子;并通过一种直接的聚集生长,这些起始的纳米棒沿着它们横截面的径向方向快速自堆积成一种Y型结构的棒束;然后沿着棱柱轴向和平行于棱柱叶片方向的晶面同时优先生长,而垂直于叶片方向上的晶面生长得相对缓慢,导致三叶形棱I、-纳米/微米结构氧化物材料的水热合成、形貌与发光性质研究柱的形成。、经过高温相转变得到了姚03三叶形棱柱。采用同样方法可以制得姚03:E矿+的三叶形棱柱发光粉,其光谱与固相法样品的一致。将Gacl3一HZO一NaOH体系在pH=6一8时于180℃下水热处理得到了正交晶系的Gao0H晶体,其形貌分别是宽度在200一30Onm之间长径比约1:7的四方棱柱(pH=6)和长径比约1:3纺锤状的纳米棒束(pH=8)。使用HZO/DEG混合溶剂可以增加棱柱的长径比,1:Ivol时增加到1:15;1:Zvol时获得的是长达几十微米的四方棱柱纳米线6Go0OH纳米棒是从最初的胶状沉淀中成核后沿着c轴优先生长而成的。pH值的高低可导致Ga0OH晶体从四方棱柱到纳米棒束的不同形貌。DEG的存在对晶体的生长可能有两点作用:一是抑制晶核形成;二是降低晶体沿着横截面晶面的生长速度。经过高温锻烧的产物是保持着前驱体形貌的p一GaZO3晶体。254nm激发下p一GaZO3纳米棒的发射谱是从300nm到600nln的宽峰,最大值在455nln。发光的平均寿命是64ns。其蓝光发射起源于氧空位给体提供的电子和来自受体嫁空位或者嫁氧空位对的空穴之间的复合。采用相似方法制备了p一GaZO3:Dy纳米棒束,并与固相法样品对比了光谱性质的异同。将三种5102基材料:MCM一41型分子筛(直接分子筛CMS和萃取分子筛EMS)、无规颗粒(ASP)和干凝胶(SG)进行从室温到1000℃的不同温度不同时间热处理。254nm激发下,MCM一41没有发光现象。而ASP和SG系列样品随着热处理温度不同而显示不同的PL。说明ASP和SG与MCM一41有着不同的发光机理。排除了ASP和SG样品的发光中心是来自5102网络本身的结构缺陷,认为是其中所含有机物在热处理中产生的碳杂质引起。结果也表明MCM41中模板剂在热处理的碳化产物并没有引起MCM一41的PL。在365nm激发下,MCM一41与ASP、SG的PL现象大致相同。表明所有系列的样品的发光机理相同。CMS和EMS两个系列在300℃以上处理的样品的PL相似,说明模板剂的存在及其碳化并没有影响MCM一41的PL。所有系列样品在365nm激发下的PL认为是起源于5102网络中与氧相关的结构缺陷三Si一0.,而不是碳掺杂作用引起的。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have investigated the structure, magnetization and magnetoresistance (MR) of the double perovskite compounds Sr2Fe1−xGaxMoO6 (0≤x≤0.25). Rietveld refinement results show that the anti-site defects (ASDs) concentration increases with x, giving rise to highly disordered samples at the B/B positions, for the highest doping levels. The evolution of bond lengths and ions oxidation states could be understood by the distribution of trivalent Ga ions at the B/B positions, which leads to the formation of more disorder structure. The saturation magnetization and Curie temperature decreased with the Ga content increases in the samples, and their origin was found that the cations disorder for the Ga-doped compounds is annihilating double exchange mechanism due to the presence of significant amounts of Fe and Ga cations on the B site. The low-field magnetoresistance of Sr2FeMoO6 (SFMO) can be greatly enhanced by replacing the Fe by the nonmagnetic Ga ion up to a temperature of 300 K,since Ga ions may act as a barrier for electron transport along the chain in the ferromagnetic segregation and weaken the ferromagnetic exchange.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This feature article highlights work from the authors' laboratories on the various kinds of oxide optical materials, mainly luminescence and pigment materials with different forms (powder, core-shell structures, thin film and patterning) prepared by the Pechini-type sol-gel (PSG) process. The PSG process, which uses the common metal salts (nitrates, acetates, chlorides, etc.) as precursors and citric acid (CA) as chelating ligands of metal ions and polyhydroxy alcohol (such as ethylene glycol or poly ethylene glycol) as a cross-linking agent to form a polymeric resin on molecular level, reduces segregation of particular metal ions and ensures compositional homogeneity. This process can overcome most of the difficulties and disadvantages that frequently occur in the alkoxides based sol-gel process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the effect of cerium oxide on the precipitation of Ag nanoparticles in silicate glass via a femtosecond laser irradiation and successive annealing. Absorption spectra show that Ce3+ ions may absorb part of the laser energy via multiphoton absorption and release free electrons, resulting in an increase of the concentration of Ag atoms and a decrease of the concentration of hole-trapped color centers, which influence precipitation of the Ag nanoparticles. In addition, we found that the formed Ag-0 may reduce Ce4+ ions to Ce3+ ions during the annealing process, which inhibits the growth of the Ag nanoparticles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The frequency upconversion properties of Er3+/Yb3+-codoped heavy metal oxide lead-germanium-bismuth oxide glasses under 975 mn excitation are investigated. Intense green and red emission bands centered at 536, 556 and 672 run, corresponding to the H-2(1/2) --> I-4(15/2), S-4(3/2) --> I-4(15/2) and F-4(9/2) -->I-4(15/2) transitions of Er3+, respectively, were simultaneously observed at room temperature. The influences of PbO on upconversion intensity for the green (536 and 556 nm) and red (672 nm) emissions were compared and discussed. The optimized rare earth doping ratio of Er3+ and Yb3+, is 1:5 for these glasses, which results in the stronger upconversion fluorescence intensities. The dependence of intensities of upconversion emission on excitation power and possible upconversion mechanisms were evaluated and analyzed. The structure of glass has been investigated by means of infrared (IR) spectral analysis. The results indicate that the Er3+/Yb3+-codoped heavy metal oxide lead-germanium-bismuth oxide glasses may be a potential materials for developing upconversion fiber optic devices. (C) 2006 Published by Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the Fresnel-Kirchkoff diffraction theory, we build up a Gaussian diffraction model of metal-oxide-type super-resolution near field structure (super-RENS), which can describe far field optical properties. The spectral contrast induced by refractive index and the structural changes in AgOx, PtOx and PdOx thin films, which are the key functional layers in super-RENS, are studied by using this model. Comparison results indicate that the spectral contrast intensively on laser-induced distribution and change of the refractive index in the metal-oxide films. The readout mechanism of the metal-oxide-type super-RENS optical disc is further clarified. This Gaussian diffraction model can be used as a simple and effective method for choosing proper active materials in super-RENS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tm3+/Yb3+-codoped heavy metal oxide-halide glasses have been synthesized by conventional melting and quenching method. Structural properties were obtained based on the Raman spectra, indicating that halide ion has an important influence on the phonon density and maximum phonon energy of host glasses. Intense blue and weak red emissions centered at 477 and 650 nm, corresponding to the transitions (1)G(4) -> H-3(6) and (1)G(4) -> H-3(4), respectively, were observed at room temperature. The possible up-conversion mechanisms are discussed and estimated. With increasing halide content, the up-conversion luminescence intensity and blue luminescence lifetimes of Tm3+ ion increase notably. Our results show that with the substitution of halide ion for oxygen ion, the decrease of phonon density and maximum phonon energy of host glasses both contribute to the enhanced up-conversion emissions. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tm3+-doped oxide-chloride germanate and tellurite glasses have been synthesized by conventional melting method. Intense up-conversion luminescence emissions were simultaneously observed at room temperature in these glasses. The possible up-conversion mechanisms are discussed and estimated. However, in these Tm3+-doped glasses, tellurite glass showed weaker up-conversion emissions than germanate glass, which is inconsistent with the prediction from the difference of maximum phonon energy between tellurite and germanate glasses. In this paper, Raman spectroscopy was employed to investigate the origin of the difference in up-conversion luminescence in the two glasses. Our results confirm that, besides the maximum phonon energy, the phonon density of host glasses is also an important factor in determining the up-conversion efficiency. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ytterbium-sensitized erbium-doped oxide-halide tellurite and germanate-niobic-lead glasses have been synthesized by conventional melting method. Intense green and red emissions centered at 525, 546 and 657 nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2) and F-4(9/2) -> I-4(15/2), respectively, were simultaneously observed at room temperature in these glasses. The quadratic dependence of the 525, 546 and 657 nm emissions on excitation power indicates that a two-photon absorption process occurs. Tellurite glass showed a weaker up-conversion emission than germanate-niobic-lead glass, which is inconsistent with the prediction from the difference of maximum phonon energy between tellurite and germanate-mobic-lead glasses. In this paper, Raman spectroscopy was employed to investigate the origin of the difference in up-conversion luminescence in the two glasses. Compared with phonon side-band spectroscopy, Raman spectroscopy extracts more information including both phonon energy and phonon density. Our results reveal that the phonon density and the maximum phonon energy of host glasses are both important factors in determining the up-conversion efficiency. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The absorption spectra, emission spectra and infrared spectra of Er3+/Yb3+ co-doped xBi(2)O(3)-(65 - x)P2O5-4Yb(2)O(3)-11Al(2)O(3)-5BaO-15Na(2)O were measured and investigated. Spontaneous emission probability, radiative lifetime and branching ratios of Er3+ were calculated according to the Judd-Ofelt theory. The role of substitution of Bi2O3 for P2O5 on luminescence of Er3+/Yb3+ co-doped aluminophosphate glasses has been investigated. The calculated radiative lifetimes (tau(rad)) for I-4(13/2) and I-4(11/2) were decreasing with Bi2O3 content increases, whereas the measured total lifetime (tau(meas)) for I-4(13/2) showed linearly increasing trends. The effect of Bi2O3 introduction on OH- groups was also discussed according to the IR transmittance spectra of glasses. It was found that FWHM of glasses were not affected with the substitution of Bi2O3 for P2O5. The emission spectra intensity increased with Bi2O3 content due to the decreases of phonon energy and OH- content in glasses. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New broadband near infrared luminescence covering the whole work windows (1260-1625 nm) of the current wavelength division multiplexing (WDM) system was found from bismuth-activated M2O-Al2O3-SiO2 (M = Li, Na) and Li2O-Ta2O5-SiO2 glasses at room temperature in the case of 808 nm-laser excitation. But the near infrared luminescence mechanism of the bismuth-activated glasses is not well understood up to now. The figure-of-merits of bandwidth and gain of the glasses are better than those of Er3+-doped silicate glasses and Ti3+ doped sapphire, implying they are the promising gain-medium candidates for the broadband amplifiers and the widely tunable laser sources. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Yb3+ heavy-doped yttrium lanthanum oxide transparent ceramics were fabricated and their spectroscopic properties were investigated. The absorption bands of (YbxY0.9-xLa0.1)(2)O-3 (x = 0.05-0.15) ceramics are broad at wavelength of 900-1000 nm. The absorption cross-sections centered at 974 nm and the emission cross-sections at 1031 nm of Yb3+ ion are 0.89-1.12 x 10(-20) cm(2) and 1.05 x 10(-20) cm(2) respectively. The up-conversion luminescence intensity of Yb3+-doped yttrium lanthanum oxide ceramics increased firstly, then decreased with the increase of Yb3+ ion content. (C) 2008 Elsevier B.V. All rights reserved.