226 resultados para hybrid glasses
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Poly(epsilon -caprolactone) (PCL) and silica (SiO2) organic-inorganic hybrid materials have been synthesized by the sol-gel method. The crystallization behavior of PCL in silica networks has been investigated using differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The degree of PCL crystallinity in PCL/SiO2 hybrid networks reduces with increase of SiO2. PCL is in an amorphous state when the concentration of PCL is lower than 40wt% in the hybrid system. The melting point of PCL in the networks is lower than, but close to that of pure PCL. WAXD and SEM results show that the crystalline behavior of PCL in PCL/SiO2 hybrid system is strictly confined. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
A new type of sol-gel organic-inorganic hybrid material was developed and used for the production of biosensors. This material is composed of silica sol and a grafting copolymer of poly(vinyl alcohol) with 4-vinylpyridine. It prevents the cracking of conventional sol-gel-derived glasses and eliminates the swelling of the hydrogel. The optimum composition of the hybrid material was first examined, and then glucose oxidase was immobilized in this matrix to demonstrate its application. The characteristics of the biosensor were studied by cyclic voltammetry and chronoamperometry. The biosensor exhibited a series of good properties: high sensitivity (600 nA mmol(-1)L(-1)), short response time (11 s) and remarkable long-term stability in storage (at least 5 months). In addition, the characteristics of the second-generation biosensor with the use of tetrathiafulvalene as a mediator mere discussed.
Resumo:
Hybrid materials incorporating poly(ethylene glycol) (PEG) with tetraethoxysilane (TEOS) via a sol-gel process were studied for a wide range of compositions of PEG by DSC and high resolution solid-state C-13- and Si-29-NMR spectroscopy. The results indicate that the microstructure of the hybrid materials and the crystallization behavior of PEG in hybrids strongly depend on the relative content of PEG. With an increasing content of PEG, the microstructure of hybrid materials changes a lot, from intimate mixing to macrophase separation. It is found that the glass transition temperatures (T-g) (around 373 K) of PEG homogeneously embedded in a silica network are much higher than that (about 223 K) of pure PEG and also much higher in melting temperatures T-m (around 323 K) than PEG crystallites in heterogeneous hybrids. Meanwhile, the lower the PEG content, the more perfect the silica network, and the higher the T-g of PEG embedded in hybrids. An extended-chain structure of PEG was supposed to be responsible for the unusually high T-g of PEG. Homogeneous PEG-TEOS hybrids on a molecular level can be obtained provided that the PEG. content in the hybrids is less than 30% by weight. (C) 1998 John Wiley & Sons, Inc.
Resumo:
The stiffness behaviour of injection moulded short glass fibre/impact modifier/polypropylene hybrid composites has been investigated in this work by theoretical predictions and experiments. Predictions from the self-consistent method were found to be in good agreement with test results for the impact modifier/polypropylene blends. By taking into account of the fibre orientation distributions in the skin and core layers, the values of Young's modulus for the skin and core layers were predicted by employing Eshelby's equivalent inclusion method and the average induced strain approach. The prediction of the values of Young's modulus for the whole sample was obtained by applying the simple mixture theory of laminated composites to the predicted results for the skin and core layers. Good correlation between predicted and experimental Young's modulus values were found.
Resumo:
The room temperature creep behaviors of Ce-based bulk metallic glasses were examined by the use of nanoindentation. The creep rate and creep rate sensitivity of Ce-based BMGs were derived from indentation creep curves. The low creep rate sensitivity of Ce-based BMGs indicates that the room temperature creep is dominated by localized shear flow. The experimental creep curves can be described by a generalized Kelvin model. Furthermore, the creep retardation spectrum is calculated for the Ce-based metallic glasses. The results showed that creep retardation spectrum consists of two relatively separated peaks with the well defined characteristic relaxation times.
Resumo:
In this paper, construction of hybrid device by integrating nanowires with F1-ATPase motors is described. The nickel nanowires and multi-segment nanowires, including gold and nickel, were fabricated by electrochemical deposition in nanoporous templates. The nickel nanowires functionalized by biotinylated peptide can be assembled directly onto F1-ATPase motors to act as the propellers. If the multicomponent nanowires, including gold and nickel, were selectively functionalized by the thiol group modified ssDNA and the synthetic peptide, respectively, the biotinylated F1- ATPase motors can be attached to the biotinylated peptide on nickel segment of the nanowires. Then, the multi-component nanowires can also be used as the propellers, and one may observe the rotations of the multi-component nanowires driven by F1-ATPase motors. Therefore, introduction of multiple segments along the length of a nanowire can lead to a variety of multiple chemical functionalities, which can be selectively bound to cells and special biomolecules. This method provides an insight for the construction of other hybrid devices with its controlling arrangement of different biomolecule on designed nanometer scale structures.
Resumo:
An analytical-numerical method is presented for analyzing dispersion and characteristic surface of waves in a hybrid multilayered piezoelectric plate. In this method, the multilayered piezoelectric plate is divided into a number of layered elements with three-nodal-lines in the wall thickness, the coupling between the elastic field and the electric field is considered in each element. The associated frequency dispersion equation is developed and the phase velocity and slowness, as well as the group velocity and slowness are established in terms of the Rayleigh quotient. Six characteristic wave surfaces are introduced to visualize the effects of anisotropy and piezoelectricity on wave propagation. Examples provide a full understanding for the complex phenomena of elastic waves in hybrid multilayered piezoelectric media.
Resumo:
The impact response and failure mechanisms of ultrahigh modulus polyethylene (UHMPE) fiber composites and UHMPE fiber-carbon fiber hybrid composites have been investigated. Charpy impact, drop weight impact and high strain rate impact experiments have been performed in order to study the impact resistance, notch sensitivity, strain rate sensitivity and hybrid effects. Results obtained from dynamic and quasi-static measurements have been compared. Because of the ductility of UHMPE fibers, the impact energy absorption of UHMPE fiber composites is very high, thereby leading to excellent damage tolerance. By hybridizing with UHMPE fibers, the impact properties of carbon fiber composites can be greatly improved. The impact and shock failure mechanisms of these composites are discussed.
Resumo:
介绍一种可用于微电子封装局部应变场分析的实验/计算混合方法,该方法结合了有限元的整体/局部模型和实时的激光云纹干涉技术,利用激光云纹干涉技术所测得的应变场来校核有限元整体模型的计算结果,并用整体模型的结果作为局部模型的边界条件,对实验难以确定的封装结构局部位置的应力、应变场进行分析.用这种方法对可控坍塌倒装封装结构在热载荷作用下焊球内的应变场分布进行了分析,结果表明该方法能够提供封装结构内应力-应变场分布的准确和可靠的结果,为微电子封装的可靠性分析提供重要的依据. For the reliability analysis of electronic packages, strains in very localized areas, such as an interconnection or a corner, need to be determined. In this paper, a modified hybrid method of global/local modeling and real time moire interferometry is presented. In this method, a simplified, coarsely meshed global model is developed to get rough information about the deformation of the microelectronic package. In order to make sure the global model has been reasonably simplified and the material properties ...
Resumo:
Essential work of fracture (EWF) analysis is used to study the effect of the silica doping level on fracture toughness of polyimide/silica (PI/SiO2) hybrid films. By using double-edge-notched-tension (DENT) specimens with different ligament lengths, it seems that the introduction of silica additive can improve the specific essential work of fracture (w (e) ) of PI thin films, but the specific non-essential work of fracture (beta w (p) ) will decease significantly as the silica doping level increasing from 1 to 5 wt.%, and even lower than that of neat PI. The failure process of the fracture is investigated with online scanning electron microscope (SEM) observation and the parameters of non-essential work of fracture, beta and w (p) , are calculated based on finite element (FE) method.
Resumo:
We report ductile bulk metallic glasses based on martensitic alloys. The slowly cooled specimens contain a mixture of parent 'austenite' and martensite phase. The slightly faster cooled bulk metallic glasses with 2-5 nm sized 'austenite'-like crystalline cluster reveal high strength and large ductility (16%). Shear bands propagate in a slither mode in this spatially inhomogeneous glassy structure and undergo considerable 'thickening' from 5-25 nm. A 'stress induced displacive transformation' is proposed to be responsible for both plasticity and work-hardening-like behavior of these 'M-Glasses'.
Resumo:
Hybrid finite compact (FC)-WENO schemes are proposed for shock calculations. The two sub-schemes (finite compact difference scheme and WENO scheme) are hybridized by means of the similar treatment as in ENO schemes. The hybrid schemes have the advantages of FC and WENO schemes. One is that they possess the merit of the finite compact difference scheme, which requires only bi-diagonal matrix inversion and can apply the known high-resolution flux to obtain high-performance numerical flux function; another is that they have the high-resolution property of WENO scheme for shock capturing. The numerical results show that FC-WENO schemes have better resolution properties than both FC-ENO schemes and WENO schemes. In addition, some comparisons of FC-ENO and artificial compression method (ACM) filter scheme of Yee et al. are also given.
Resumo:
Plastic deformation behaviors of Zr65Al10Ni10CU15 and Zr52.5Al10Ni10Cu15Be12.5 bulk metallic glasses (BMGs) are studied by using the depth-sensing nanoindentation, microindentation and uniaxial compression. The Be-containing BMG exhibits a significantly improved overall plastic strain compared with the Be-free alloy during compressive tests. Both BMGs show a loading-rate-dependent serrated flow during nanoindentation measurements, but the Be-containing alloy exhibits a much lower critical loading rate for the disappearance of the serration than the Be-free BMG. The shear band patterns developed during plastic deformation are investigated by microindentation technique, wherein much higher shear band density is found in the Be-containing alloy than in the Be-free alloy, indicating an easier nucleation of shear bands in the former BMG. The difference in the plastic deformation behavior of the two BMGs can be explained by a free volume model.
Resumo:
Bulk metallic glasses of Nd65Al10Fe25-xCox (x=0,5,10) have been prepared in the form of 3 mm diam rods. Results of differential scanning calrimetry, dynamic mechanical thermal analysis (DMTA), and x-ray diffraction are presented for these alloys. It is shown that the glass transition and crystallization have been observed by DMTA. The reduced glass transition temperature of these glasses, defined as the ratio between the glass transition temperature T-g and the melting temperature T-l is in the range from 0.55 to 0.62. All these glasses have a large supercooled liquid region (SLR), ranging from 80 to 130 K. The high value of reduced glass transition temperature and wide SLR agree with their good glass formation ability.
Resumo:
Plastic deformation behaviour of Zr52.5Al10Ni10Cu15Be12.5 and Mg65Cu25Gd10 bulk metallic glasses (BMGs) is studied by using the depth-sensing nanoindentation and microindentation. The subsurface plastic deformation zone of the BMGs is investigated using the bonded interface technique. Both the BMGs exhibit the serrated flow depending on the loading rate in the loading process of indentation. Slow indentation rates promote more conspicuous serrations, and rapid indentations suppress the serrated flow. Mg-based BMG shows a much higher critical loading rate for the disappearance of the serration than that in Zr-based BMG. The significant difference in the shear band pattern in the subsurface plastic deformation zone is responsible for the different deformation behaviour between the two BMGs. Increase of the loading rate can lead to the increase of the density of shear bands. However, there is no distinct change in the character of shear bands at the loading rate of as high as 1000 nm/s.