4 resultados para human stereo perception
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
MRGX2, a G-protein-coupled receptor, is specifically expressed in the sensory neurons of the human peripheral nervous system and involved in nociception. Here, we studied DNA polymorphism patterns and evolution of the MRGX2 gene in world-wide human populations and the representative nonhuman primate species. Our results demonstrated that MRGX2 had undergone adaptive changes in the path of human evolution, which were likely caused by Darwinian positive selection. The patterns of DNA sequence polymorphisms in human populations showed an excess of derived substitutions, which against the expectation of neutral evolution, implying that the adaptive evolution of MRGX2 in humans was a relatively recent event. The reconstructed secondary structure of the human MRGX2 revealed that three of the four human-specific amino acid substitutions were located in the extra-cellular domains. Such critical substitutions may alter the interactions between MRGX2 protein and its ligand, thus, potentially led to adaptive changes of the pain-perception-related nervous system during human evolution. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This paper reviews a large number of genes under positive Darwinian selection in modern human populations, such as brain development genes, immunity genes, reproductive related genes, perception receptors. The research on the evolutionary property of thes
Resumo:
An important characteristic of virtual assembly is interaction. Traditional di-rect manipulation in virtual assembly relies on dynamic collision detection, which is very time-consuming and even impossible in desktop virtual assembly environment. Feature-matching isa critical process in harmonious virtual assembly, and is the premise of assembly constraint sens-ing. This paper puts forward an active object-based feature-matching perception mechanism and afeature-matching interactive computing process, both of which make the direct manipulation in vir-tual assembly break away from collision detection. They also help to enhance virtual environmentunderstandability of user intention and promote interaction performance. Experimental resultsshow that this perception mechanism can ensure that users achieve real-time direct manipulationin desktop virtual environment.
Resumo:
It is important for practical application to design an effective and efficient metric for video quality. The most reliable way is by subjective evaluation. Thus, to design an objective metric by simulating human visual system (HVS) is quite reasonable and available. In this paper, the video quality assessment metric based on visual perception is proposed. Three-dimensional wavelet is utilized to decompose video and then extract features to mimic the multichannel structure of HVS. Spatio-temporal contrast sensitivity function (S-T CSF) is employed to weight coefficient obtained by three-dimensional wavelet to simulate nonlinearity feature of the human eyes. Perceptual threshold is exploited to obtain visual sensitive coefficients after S-T CSF filtered. Visual sensitive coefficients are normalized representation and then visual sensitive errors are calculated between reference and distorted video. Finally, temporal perceptual mechanism is applied to count values of video quality for reducing computational cost. Experimental results prove the proposed method outperforms the most existing methods and is comparable to LHS and PVQM.