9 resultados para horizons d’attente

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

在黄土高原沟壑区长期施肥对土壤剖面中的 NH4- N、NO3 - N含量分布影响不同。长期不同施肥处理对 NH4- N含量和分布保持相对稳定 ;但不同施肥对 NO3 - N含量分布影响显著。凡施氮肥处理中 ,土壤剖面中出现了 NO3 - N深层富集分布。土壤剖面中 NO3 - N深层富集分布是作物降雨等条件的综合影响下经多年累积而形成的。其中 N处理中 ,NO3 - N富集深度的最大为 12 0 cm~ 2 0 0 cm,富集量为 2 91.4kg/ hm2。NPM处理中 ,NO3 - N富集量最大356.8kg/ hm2 ,但富集分布深度降低 60 cm~ 12 0 cm。 NP处理可有效降低 NO3 - N富集量169.9kg/ hm2和富集分布深度 80 cm~ 140 cm。不施氮肥处理中 ,NO3 - N含量分布在整个土壤剖面显著降低。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-resolution sampling, measurements of organic carbon contents and C-14 signatures of selected four soil profiles in the Haibei Station situated on the northeast Tibetan Plateau, and application of C-14 tracing technology were conducted in an attempt to investigate the turnover times of soil organic carbon and the soil-CO2 flux in the alpine meadow ecosystem. The results show that the organic carbon stored in the soils varies from 22.12x10(4) kg C hm(-2) to 30.75x10(4) kg C hm(-2) in the alpine meadow ecosystems, with an average of 26.86x10(4) kg C hm(-2). Turnover times of organic carbon pools increase with depth from 45 a to 73 a in the surface soil horizon to hundreds of years or millennia or even longer at the deep soil horizons in the alpine meadow ecosystems. The soil-CO2 flux ranges from 103.24 g C m(-2) a(-1) to 254.93 gC m(-2) a(-1), with an average of 191.23 g C m(-2) a(-1). The CO2 efflux produced from microbial decomposition of organic matter varies from 73.3 g C m(-2) a(-1) to 181 g C m(-2) a(-1). More than 30% of total soil organic carbon resides in the active carbon pool and 72.8%. 81.23% of total CO2 emitted from organic matter decomposition results from the topsoil horizon (from 0 cm to 10 cm) for the Kobresia meadow. Responding to global warming, the storage, volume of flow and fate of the soil organic carbon in the alpine meadow ecosystem of the Tibetan Plateau will be changed, which needs further research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Physical protection is one of the important ways to stabilize organic carbon in soils. In order to understand the role of soils as a carbon sink or source in global climatic change and carbon cycles and properly manage soils as a carbon sink, we ought to know how many organic carbon (OC) in a given soil could be protected. By a density fractionation approach and ultrasonic technique, each soil sample was divided into three fractions: free light fraction (free-LF), occluded fraction (occluded-LF) and heavy fraction (HF). The obtained fractions were analyzed for total OC content, carbohydrate content and recalcitrant OC content. The results showed: (i) In the whole soil profile, dominance of OC consistently decreased in the following order: HF, free-LF, occluded-LF. This suggested that OC in soils were mostly protected. From 0-10 to 60-80 cm horizons, the OC in free-LF decreased from 25.27% to 3.72%, while OC in HF they were increased from 72.57% to 95.39%. The OC in occluded-LF was between 2.16% and 0.89%. (ii) Organic carbon recalcitrance in free-LF was similar to that in HF, and was even higher than that in HF below the surface horizon. This suggested that free-LF was not always the most fresh and non-decomposed fraction. OM quality of HF was higher than that of free-LF in the surface 10 cm below, namely the protected OM had higher quality than free OM in these horizons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seismic While Drilling (SWD) is a new wellbore seismic technique. It uses the vibrations produced by a drill-bit while drilling as a downhole seismic energy source. The continuous signals generated by the drill bit are recorded by a pilot sensor attached to the top of the drill-string. Seismic wave receivers positioned in the earth near its surface receive the seismic waves both directly and reflection from the geologic formations. The pilot signal is cross-correlated with the receiver signals to compute travel-times of the arrivals (direct arrival and reflected arrival) and attenuate incoherent noise. No downhole intrusmentation is required to obtain the data and the data recording does not interfere with the drilling process. These characteristics offer a method by which borehole seismic data can be acquired, processed, and interpreted while drilling. As a Measure-While-Drill technique. SWD provides real-time seismic data for use at the well site . This can aid the engineer or driller by indicating the position of the drill-bit and providing a look at reflecting horizons yet to be encountered by the drill-bit. Furthermore, the ease with which surface receivers can be deployed makes multi-offset VSP economically feasible. First, this paper is theoretically studying drill-bit wavefield, interaction mode between drill-bit and formation below drill-bit , the new technique of modern signal process was applied to seismic data, the seismic body wave radiation pattern of a working roller-cone drill-bit can be characterized by theoretical modeling. Then , a systematical analysis about the drill-bit wave was done, time-distance equation of seismic wave traveling was established, the process of seismic while drilling was simulated using the computer software adaptive modeling of SWD was done . In order to spread this technique, I have made trial SWD modeling during drilling. the paper sketches out the procedure for trial SWD modeling during drilling , the involved instruments and their functions, and the trial effect. Subsurface condition ahead of the drill-bit can be predicted drillstring velocity was obtained by polit sensor autocorrelation. Reference decovolution, the drillstring multiples in the polit signal are removed by reference deconvolution, the crosscorrelation process enhance the signal-to-noise power ratio, lithologies. Final, SWD provides real-time seismic data for use at the well site well trajectory control exploratory well find out and preserve reservoirs. intervel velocity was computed by the traveltime The results of the interval velocity determination reflects the pore-pressure present in the subsurface units ahead of the drill-bit. the presences of fractures in subsurface formation was detected by shear wave. et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Late Cenozoic has witnessed a series of climate-environmental change which ends with a transitional shift from greenhouse to icehouse conditions. In last two decades, scientists began to employ the tectonic uplift and its weathering effect to interpret the climatic changes during the late Cenozoic. However, this endeavor has partly been restricted by the lacking of regional and global chemical weathering data. The loess-red clay deposit in the Loess Plateau may record the weathering features of the detritus material from the wide range upwind of the Loess Plateau. Therefore geochemistry of the loess-plaeosol and red clay sequences may provide insights into the regional chemical weathering regime and the connection between the chemical weathering and the late Cenozoic climate-environmental change Here we selected 319 samples from the Baishui section near the Pingliang City, Gansu Province, and analyzed them with X-ray fluorescence. Based on the result, we reconstruct the chemical weathering history of the Baishui section since 6Ma. We chose CIA as the proxy for chemical weathering intensity. The CIA ratio in soil units is higher than in adjacent loess horizons, but lower than in the red clay, in good agreement with the field observation. The CIA ratios of the Baishui section correlates well with the global ice volume fluctuations, indicating that the global cooling may contribute a lot to the chemical weathering variations in Chinese Loess Plateau. There are at least 3 million-year time scale variations that can be identified in the chemical weathering intensity curve, i.e., between 3.3 to 2.1 Ma, 1.7 to 0.9 Ma and from 0.9Ma. We think these may reflect the combined effect of the tectonic uplift and ice sheets on monsoon intensity. Other time scale variations can be also observed. In the period between 2.4 and 0.8 Ma, the CIA record display the 400,000 years cycle, which may be resulted from the Tibetan uplift during the Pliocene-early Pleistocene which have significantly amplified the monsoon response sensitivity to the orbital-scale variations in insolation. From 1.2 Ma, the 100,000 years period became intensifying, and particularly after 0.8 Ma, the earlier monsoon response at 400,000 year periodicity was overwhelmed by the ice sheet forcing at 100,000 year periodicity. These may indicate that the expansions of the Northern Hemisphere ice sheets may have crossed a threshold, which enforce the monsoon responding at the 100,000 year periodicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sangequan Uplift in Junggar Basin is an inherited positive structure, which has undergone many times of violent tectonic movements, with high tectonic setting, and far away from the oil-source sag, reservoir forming condition is complex. Combining sequence stratigraphy, depositional facies, reservoir formation theory with seismic and well logging analysis, this paper conducted integrated study on the hydrocarbon migration, accumulation, entrapment conditions, the reservoir forming dynamics and the forming model, and acquired the following recognition: (1) The special reservoir formation conditions that enable Sangequan Uplift to form a giant oil-gas field of over 100 million tons of reserves are as follows: (D Deltaic frontal sandbody is developed in Jurassic Xishanyao Formation, Toutunhe Formation and Lower Cretaceous Hutubihe Formation, with good reservoir quality;? Abundant hydrocarbon resources are found in Western Well Pen-1 Sag, which provides sufficient oil sources for reservoir formation of Sagequan Uplift; ?The unconformity-fault-sandbody system has formed a favorable space transporting system and an open conduit for long-distance hydrocarbon migration; ?fault, low amplitude anticline and lithological traps were well developed, providing a favorable space for hydrocarbon accumulation. (2) The most significant source beds in the Western Well Pen-1 Sag are the Mid-Permian Lower Wuerhe Formation and Lower-Permian Fengcheng Formation. The oil in the Well Block Lu-9 and Shinan Oilfield all originated from the hydrocarbon source beds of Fengcheng Formation and Lower Wuerhe Formation in the Western Well Pen-1 Sag and migrated through Jidong and Jinan deep faults linking unconformity of different regions from sources to structural highs of the uplift and shallow horizons. (3) There were 2 reservoir formation periods in District Sangequan: the first was in late Cretaceous during which the upper part of Xishanyao Formation and Toutunhe Formation; the second was in Triassic, the main resources are high-maturity oil and gas from Fengcheng Formation and Wuerhe Formation in Western Pen-1 Well sag and the gas from coal measure strata of Xishanyao Formation, that were accumulated in Hutubihehe Formation. (4) Model of the hydrocarbon migration, accumulation, reservoir formation of the study area are categorized as three types starting from the hydrocarbon source areas, focusing on the faults and unconformity and aiming at reservoirs: ① Model of accumulation and formation of reservoir through faults or unconformities along the "beam" outside source; ②Model of migration, accumulation and reservoir formation through on-slope near source;③Model of migration, accumulation and reservoir formation of marginal mid-shallow burial biogas-intermediate gas. (5) Pinchout, overlap and lithologic traps are developed in transitional zones between Western Well Pen-1 sag and Luliang uplift. Many faulted blocks and faulted nose-like traps are associated with large structures on Sangequan uplift. Above traps will be new prospecting areas for further hydrocarbon exploration in future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Grove Mountains, including 64 nunataks, is situated on an area about 3200km2 in the inland ice cap of east Antarctica in Princess Elizabeth land (72o20'-73°101S, 73°50'-75o40'E), between Zhongshan station and Dome A, about 450km away from Zhongshan station (69°22'S, 76°22'E). Many workers thought there was no pedogenesis in the areas because of the less precipitation and extreme lower temperature. However, during the austral summer in 1999-2000, the Chinaer 16 Antarctic expedition teams entered the inland East Antarctica and found three soil spots in the Southern Mount Harding, Grove Mountains, East Antarctica. It is the first case that soils are discovered in the inland in East Antarctica. Interestingly, the soils in this area show clay fraction migration, which is different from other cold desert soils. In addition, several moraine banks are discovered around the Mount Harding. The soil properties are discussed as below. Desert pavement commonly occurs on the three soil site surfaces, which is composed of pebbles and fragments formed slowly in typical desert zone. Many pebbles are subround and variegated. These pebbles are formed by abrasion caused by not only wind and wind selective transportation, but also salt weathering and thaw-freezing action on rocks. The wind blows the boulders and bedrocks with snow grains and small sands. This results in rock disintegration, paved on the soil surface, forming desert pavement, which protects the underground soil from wind-blow. The desert pavement is the typical feature in ice free zone in Antarctica. There developed desert varnish and ventifacts in this area. Rubification is a dominant process in cold desert Antarctic soils. In cold desert soils, rubification results in relatively high concentrations of Fed in soil profile. Stained depth increases progressively with time. The content of Fed is increasing up to surface in each profile. The reddish thin film is observed around the margin of mafic minerals such as biotite, hornblende, and magnetite in parent materials with the microscope analyzing on some soil profiles. So the Fed originates from the weathering of mafic minerals in soils. Accumulations of water-soluble salts, either as discrete horizons or dispersed within the soil, occur in the soil profiles, and the salt encrustations accumulate just beneath surface stones in this area. The results of X-ray diffraction analyses show that the crystalline salts consist of pentahydrite (MgSO4-5H2O), hexahydrite (MgSO4-6H2O), hurlbutite (CaBe2(PO4)2), bloedite (Na2Mg(S04)2-4H2O), et al., being mainly sulfate. The dominant cations in 1:5 soil-water extracts are Mg2+ and Na+, as well as Ca2+ and K+, while the dominant anion is SO42-, then NO3-, Cl- and HCO3-. There are white and yellowish sponge materials covered the stone underside surface, of which the main compounds are quartz (SiO2, 40.75%), rozenite (FeSOKkO, 37.39%), guyanaite (Cr2O3-1.5H2O, 9.30%), and starkeyite (MgSO4-4H2O, 12.56%). 4) The distribution of the clay fraction is related to the maximum content of moisture and salts. Clay fraction migration occurs in the soils, which is different from that of other cold desert soils. X-ray diffraction analyses show that the main clay minerals are illite, smectite, then illite-smectite, little kaolinite and veirniculite. Mica was changed to illite, even to vermiculite by hydration. Illite formed in the initial stage of weathering. The appearance of smectite suggests that it enriched in magnesium, but no strong eluviation, which belongs to cold and arid acid environment. 5) Three soil sites have different moisture. The effect moisture is in the form of little ice in site 1. There is no ice in site 2, and ice-cement horizon is 12 cm below the soil surface in site 3. Salt horizon is 5-10 cm up to the surface in Site 1 and Site 2, while about 26cm in site 3. The differentiation of the active layer and the permafrost are not distinct because of arid climate. The depth of active layer is about 10 cm in this area. Soils and Environment: On the basis of the characteristics of surface rocks, soil colors, horizon differentiation, salt in soils and soil depth, the soils age of the Grove Mountains is 0.5-3.5Ma. No remnants of glaciations are found on the soil sites of Mount Harding, which suggests that the Antarctic glaciations have not reached the soil sites since at least 0.5Ma, and the ice cap was not much higher than present, even during the Last Glacial Maximum. The average altitude of the contact line of level of blue ice and outcrop is 2050m, and the altitude of soil area is 2160m. The relative height deviation is about 110m, so the soils have developed and preserved until today. The parental material of the soils originated from alluvial sedimentary of baserocks nearby. Sporepollen were extracted from the soils, arbor pollen grains are dominant by Pinus and Betula, as well as a small amount Quercus, Juglans, Tilia and Artemisia etc. Judging from the shape and colour, the sporepollen group is likely attributed to Neogene or Pliocene in age. This indicates that there had been a warm period during the Neogene in the Grove Mountains, East Antarctica.