290 resultados para hollow spheres

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this contribution, we for the first time report the synthesis of raspberry-like hierarchical Au/Pt nanoparticle (NP) assembling hollow spheres (RHAHS) with pore structure and complex morphology through one in situ sacrificial template approach without any post-treatment procedure. This method has some clear advantages including simplicity, quickness, high quality, good reproducibility, and no need of a complex post-treatment process (removing templating). Furthermore, the present method could be extended to other metal-based NP assembling hollow spheres. Most importantly, the as-prepared RHAHS exhibited excellent electrocatalytic activity for oxygen reduction reaction (ORR). For instance, the present RHAHS-modified electrode exhibited more positive potential (the half-wave potential at about 0.6 V), higher specific activity, and higher mass activity for ORR than that of commercial platinum black (CPB). Rotating ring-disk electrode (RRDE) voltarnmetry demonstrated that the RHAHS-modified electrode could almost catalyze a four-electron reduction of O-2 to H2O in a 0.5 M air-saturated H2SO4 solution.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Opened hollow microspheres of organoclays were prepared via spray drying the suspension of modified Na+-montmorillonite (Na+-MMT) with alkylsulfonate. The microstructure and thermal properties of these opened hollow spheres were characterized by means of wide-angle X-ray diffraction, field emission scanning electron microscopy, and thermogravimetric analysis. The results showed that the organoclays had larger interlayer spacing compared with pure Na+-MMT and higher thermal stability relative to the alkylsufonate.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Well-shaped Y2O3:Eu hollow microspheres have been successfully prepared on a large scale via a urea-based homogeneous precipitation technique in the presence of colloidal carbon spheres as hard templates followed by a subsequent heat treatment process. XRD results demonstrate that all the diffraction peaks of the samples can be well indexed to the pure cubic phase Of Y2O3. TEM and SEM images indicate that the shell of the uniform hollow spheres, whose diameters are about 250 nm, is composed of many uniform nanoparticles with diameters of about 20 nm, basically consistent with the estimation of XRD results. Furthermore, the main process in this method was carried out in aqueous condition, without the use of organic solvents or etching agents. The as-prepared hollow Y2O3:Eu microspheres show a strong red emission corresponding to the D-5(0)-F-7(2) transition of the Eu3+ ions under ultraviolet or low voltage excitation, which might find potential applications in fields such as light phosphor powders, advanced flat panel displays, field emission display devices, and biological labeling.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A high-efficiency and low-cost spongelike Au/Pt core/shell electrocatalyst with hollow cavity has been facilely obtained via a simple two-step wet chemical process. Hollow gold nanospheres were first synthesized via a modified galvanic replacement reaction between Co nanoparticles in situ produced and HAUCl(4). The as-prepared gold hollow spheres were employed as seeds to further grow spongelike Pt shell. It is found that the surface of this hybrid nanomaterial owns many Pt nanospikes, which form a spongelike nanostructure. All experimental data including scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-vis-near-infrared spectroscopy have been employed to characterize the obtained Au/Pt hybrid nanomaterial. The rapid development of fuel cell has inspired us to investigate the electrocatalytic properties for dioxygen and methanol of this novel hybrid nanomaterial. Spongelike hybrid nanomaterial mentioned here exhibits much higher catalytic activity for dioxygen reduction and methanol oxidation than the common Pt electrode.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Spherical and submicrometer-sized hollow Gd2O3:Eu3+ phosphors were prepared by homogeneous precipitation and hydrothermal method by varying the concentrations of reactants and changing the synthesis conditions. In the precipitation step, the spherical nucleus was formed and grew to large particles. In the hydrothermal step, the large particles crystallized to solid or hollow spheres. At last, Gd2O3:Eu3+ phosphors were obtained by annealing at the temperature more than 600 degrees C. The deduced mechanics of forming the solid and hollow spheres was proposed. And the obtained spherical Gd2O3:Eu3+ phosphors had better red luminescence properties. The relative luminescence intensity and the lifetime increased with increasing annealing temperatures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using sodium dodecyl sulfate (SDS), a 3D microflowery indium hydroxide [In(OH)(3)] structure assembled from 2D nanoflakes was fabricated in a large quantity via a hydrothermal approach at relative low temperature. The obtained In(OH)(3) flowers exhibited a narrow size range between 4 and 6 mu m. The properties of these composites were characterized by XRD, EDX, FE-SEM, TEM, SAED, and TGA. In this work, both the use of urea and SDS and the amounts of these components played important roles in the formation of In(OH)3 with different nanostructures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Uniform MF/YVO4:Ln(3+) (Ln = Eu, Dy, and Sm) composite microspheres have been prepared via a simple and economical wet-chemical route at ambient pressure and low temperature. Monodisperse micrometer-sized melamine formaldehyde (MF) colloidal particles were first fabricated by a condensation process of melamine with formaldehyde. Subsequently, well-dispersed YVO4 nanoparticles were successfully grown onto the MF microspheres to form core-shell structured composite particles in aqueous Solution. The as-obtained composite microspheres with perfect spherical shape are uniform in size and distribution, and the thickness and roughness of the YVO4 shells on MF cores could be tuned by varying the reaction temperature. The MF/YVO4:Ln(3+) composite phosphors show strong light emissions with different colors coming from different activator ions under ultraviolet excitation, which might find potential applications in fields such as light phosphor powders and advanced flat panel displays.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A simple and facile procedure to synthesize a novel hybrid nanoelectrocatalyst based on polyaniline (PANI) nanofiber-supported supra-high density Pt nanoparticles (NPs) or Pt/Pd hybrid NPs without prior PANI nanofiber functionalization at room temperature is demonstrated. This represents a new type of ID hybrid nanoelectrocatalyst with several important benefits. First, the procedure is very simple and can be performed at room temperature using commercially available reagents without the need for templates and surfactants. Second, ultra-high density small "bare" Pt NPs or Pt/Pd hybrid NPs are grown directly onto the surface of the PANI nanofiber, without using any additional linker. Most importantly, the present PANI nanofiber-supported supra-high density Pt NPs or Pt/Pd hybrid NPs can be used as a signal enhancement element for constructing electrochemical devices with high performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of template phase on the structures of as-synthesized silica nanoparticles with fragile DDAB vesicles as templates is reported. It is found that the template phase plays a critical role in the growth process of silica: the unstable DDAB vesicles in liquid-crystalline phase often lead to the formation of mesostructured solid spheres, and the rather stable DDAB vesicles in gel phase lead to the formation of hollow spheres with less mesostructures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, a facile sol-gel process for producing monodisperse, spherical, and nonaggregated pigment particles with a core/shell structure is reported. Spherical silica particles (245 and 385 nm in diameter) and Cr2O3, alpha-Fe2O3, ZnCo2O4, CuFeCrO4, MgFe2O4, and CoAl2O4 pigments are selected as cores and shells, respectively. The obtained core/shell-structured pigment samples, denoted as SiO2@Cr2O3 (green), SiO2@alpha-Fe2O3 (red), SiO2@MgFe2O4 (brown), SiO2@ZnCo2O4 (dark green), SiO2@CoAl2O4 (blue), and SiO2@CuFeCrO4 (black), are well characterized by using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and UV-vis diffuse reflection, as well as by investigating the magnetic properties. The results of XRD and high-resolution TEM (HRTEM) demonstrate that the pigment shells crystallize well on the surface Of SiO2 Particles. The thickness of the pigment shell can be tuned by the number of coatings, to some extent. These pigment particles can be well dispersed in some solvents (such as glycol) to form relatively more stable suspensions than the commercial products.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This report describes direct formation of giant vesicles from a series of poly(L-lysine)-block-poly(L-phenylalanine) (PLL-b-PPA) block copolymers from their water solution. These polymers are prepared by successive ring-opening polymerization (ROP) of the two alpha-amino acid N-carboxyanhydrides and then removing the side chain protecting groups by acidolysis. The structures of the copolymers are confirmed by nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), and size exclusion chromatography ( SEC). The vesicles are studied by atomic force microscopy (AFM), field emission scanning electron microscopy (ESEM), and confocal laser scanning microscopy (CLSM). Rhodamine B is used as a fluorescent probe to confirm the existence of the vesicle with an aqueous interior. The vesicle size is in the range 0.55-6 mu m, depending on the absolute and relative lengths of the two blocks, on initial polymer concentration, and on solution pH. The vesicles are still stable in water for 2 months after preparation. Addition of the copolymer to DNA solution results in complex formation with it. The complex assumes the morphology of irregular particles of less than 2 mu m. It is expected to be used in drug and gene delivery.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A polymer pair composed of poly( N-isopropylacrylamide-co-2-hydroxyethyl methacrylate terminated oligo( L-lactide)) ( poly( NIPAAm-co-HEMAOLLA)) graft random copolymer and poly( D-lactide) ( PDLA) homopolymer was self-assembled into micelles with a diameter around 100 nm through the stereocomplexation between the OLLA branches of the graft copolymer and the PDLA homopolymer. The specific intermolecular stereocomplexation was considered as the powerful ordered aggregation force in the micelle cores. The shell's component of poly( NIPAAm-co-HEMA) and its thermosensitivity were proved by H-1 nuclear magnetic resonance ( NMR) and dynamic light scattering ( DLS), respectively. The incorporation of PDLA homopolymer into the graft copolymer affected the micelle size and the critical micelle concentration ( CMC). The incorporation of even a small quantity ( 11 wt%) of PDLA into the graft copolymer micelles resulted in a great decrease of the micelle size. For the graft copolymer with low per cent grafting of 18%, the size of the corresponding micelles decreased slightly even if the PDLA content increased up to 33 wt%. For the graft copolymer with high per cent grafting of 58%, with the further increase of PDLA content, the size of the corresponding micelles at first decreased further and then began to increase. The molecular weight of the PDLA did not significantly affect the micelle size.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Magnetic luminescent nanocomposites were prepared via a layer-by-layer (LbL) assembly approach. The Fe3O4 magnetic nanoparticles of 8.5 nm were used as a template for the deposition of the CdTe quantum dots (QDs)/polyelectrolyte (PE) multilayers. The number of polyelectrolyte multilayers separating the nanoparticle layers and the number of QDs/ polyelectrolyte deposition cycles were varied to obtain two kinds of magnetic luminescent nanocomposites, Fe3O4/PEn/CdTe and Fe3O4/(PE3/CdTe)(n), respectively. The assembly processes were monitored through microelectrophoresis and UV-vis spectra. The topography and the size of the nanocomposites were studied by transmission electron microscopy. The LbL technique for fabricating magnetic luminescent nanocomposites has some advantages to tune their properties. It was found that the selection of a certain number of the inserted polyelectrolyte interlayers and the CdTe QDs loading on the nanocomposites could optimize the photoluminescence properties of the nanocomposites. Furthermore, the nanocomposites could be easily separated and collected in an external magnetic field.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hollow porous poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate)(HEMA-co-EDMA) spheres were prepared by emulsifier-free emulsion polymerization, swelling, seed emulsion polymerization and extraction. Then the spheres activated with 2,4,6-trichloro-1,3,5-triazine were functioned with adipohydrazide (AH). After periodate oxidation of its carbohydrate moieties, horseradish peroxidase was immobilized on the hydrazide-functionalized hollow porous poly(HEMA-co-EDMA) spheres. The amount of immobilized enzyme was up to 43.4 mu g of enzyme/g of support. Moreover, the immobilized horseradish peroxidase exhibited high activity and good stability.