6 resultados para historical understanding
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Towards an Understanding of the Influence of Sedimentation on Colloidal Aggregation by Peclet Number
Resumo:
The Peclet number is a useful index to estimate the importance of sedimentation as compared to the Brownian motion. However, how to choose the characteristic length scale for the Peclet number evaluation is rather critical because the diffusion length increases as the square root of the time whereas the drifting length is linearly related to time. Our Brownian dynamics simulation shows that the degree of sedimentation influence on the coagulation decreases when the dispersion volume fraction increases. Therefore using a fixed length, such as the diameter of particle, as the characteristic length scale for Peclet number evaluation is not a good choice when dealing with the influence of sedimentation on coagulation. The simulations demonstrated that environmental factors in the coagulation process, such as dispersion volume fraction and size distribution, should be taken into account for more reasonable evaluation of the sedimentation influence.
Resumo:
The stress release model, a stochastic version of the elastic-rebound theory, is applied to the historical earthquake data from three strong earthquake-prone regions of China, including North China, Southwest China, and the Taiwan seismic regions. The results show that the seismicity along a plate boundary (Taiwan) is more active than in intraplate regions (North and Southwest China). The degree of predictability or regularity of seismic events in these seismic regions, based on both the Akaike information criterion (AIC) and fitted sensitivity parameters, follows the order Taiwan, Southwest China, and North China, which is further identified by numerical simulations. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Our previous studies have shown that the determination of coagulation rate constants by turbidity measurement becomes impossible for a certain operating wavelength (that is, its blind point) because at this wavelength the change in the turbidity of a dispersion completely loses its response to the coagulation process. Therefore, performing the turbidity measurement in the wavelength range near the blind point should be avoided. In this article, we demonstrate that the turbidity measurement of the rate constant for coagulation of a binary dispersion containing particles of two different sizes (heterocoagulation) presents special difficulties because the blind point shifts with not only particle size but also with the component fraction. Some important aspects of the turbidity measurement for the heterocoagulation rate constant are discussed and experimentally tested. It is emphasized that the T-matrix method can be used to correctly evaluate extinction cross sections of doublets formed during the heterocoagulation process, which is the key data determining the rate constant from the turbidity measurement, and choosing the appropriate operating wavelength and component fraction are important to achieving a more accurate rate constant. Finally, a simple scheme in experimentally determining the sensitivity of the turbidity changes with coagulation over a wavelength range is proposed.
Resumo:
In 1990 JET operated with a number of technical improvements which led to advances in performance and permitted the carrying out of experiments specifically aimed at improving physics understanding of selected topics relevant to the "NEXT STEP". The new facilities include beryllium antenna screens, a prototype lower hybrid current drive system, and modification of the NI system to enable the injection of He-3 and He-4. Continued investigation of the hot-ion H-mode produced a value of n(D)(0)tau-E(T)(i)(0) = 9 x 10(20)m-3s keV, which is near conditions required for Q(DT) = 1, while a new peaked density profile H-mode was developed with only slightly lower performance. Progress towards steady state operation has been made by achieving ELMy H-modes under certain operating conditions, while maintaining good tau-E values. Experimental simulation of He ash transport indicates effective removal of alpha-particles from the plasma core for both L and H mode plasmas. Detailed analyses of particle and energy transport have helped establish a firmer link between particle and energy transport, and have suggested a connection between reduced energy transport and reversed shear. Numerical and analytic studies of divertor physics carried out for the pumped divertor phase of JET have helped clarify the key parameters governing impurity retention, and an intensive model validation effort has begun. Experimental simulation of alpha-particle effects with beta-fast up to 8% have shown that the slowing down processes are classical, and have given no evidence of deleterious collective effects.
Resumo:
Table of Contents
1 | Introduction | 1 |
1.1 | What is an Adiabatic Shear Band? | 1 |
1.2 | The Importance of Adiabatic Shear Bands | 6 |
1.3 | Where Adiabatic Shear Bands Occur | 10 |
1.4 | Historical Aspects of Shear Bands | 11 |
1.5 | Adiabatic Shear Bands and Fracture Maps | 14 |
1.6 | Scope of the Book | 20 |
2 | Characteristic Aspects of Adiabatic Shear Bands | 24 |
2.1 | General Features | 24 |
2.2 | Deformed Bands | 27 |
2.3 | Transformed Bands | 28 |
2.4 | Variables Relevant to Adiabatic Shear Banding | 35 |
2.5 | Adiabatic Shear Bands in Non-Metals | 44 |
3 | Fracture and Damage Related to Adiabatic Shear Bands | 54 |
3.1 | Adiabatic Shear Band Induced Fracture | 54 |
3.2 | Microscopic Damage in Adiabatic Shear Bands | 57 |
3.3 | Metallurgical Implications | 69 |
3.4 | Effects of Stress State | 73 |
4 | Testing Methods | 76 |
4.1 | General Requirements and Remarks | 76 |
4.2 | Dynamic Torsion Tests | 80 |
4.3 | Dynamic Compression Tests | 91 |
4.4 | Contained Cylinder Tests | 95 |
4.5 | Transient Measurements | 98 |
5 | Constitutive Equations | 104 |
5.1 | Effect of Strain Rate on Stress-Strain Behaviour | 104 |
5.2 | Strain-Rate History Effects | 110 |
5.3 | Effect of Temperature on Stress-Strain Behaviour | 114 |
5.4 | Constitutive Equations for Non-Metals | 124 |
6 | Occurrence of Adiabatic Shear Bands | 125 |
6.1 | Empirical Criteria | 125 |
6.2 | One-Dimensional Equations and Linear Instability Analysis | 134 |
6.3 | Localization Analysis | 140 |
6.4 | Experimental Verification | 146 |
7 | Formation and Evolution of Shear Bands | 155 |
7.1 | Post-Instability Phenomena | 156 |
7.2 | Scaling and Approximations | 162 |
7.3 | Wave Trapping and Viscous Dissipation | 167 |
7.4 | The Intermediate Stage and the Formation of Adiabatic Shear Bands | 171 |
7.5 | Late Stage Behaviour and Post-Mortem Morphology | 179 |
7.6 | Adiabatic Shear Bands in Multi-Dimensional Stress States | 187 |
8 | Numerical Studies of Adiabatic Shear Bands | 194 |
8.1 | Objects, Problems and Techniques Involved in Numerical Simulations | 194 |
8.2 | One-Dimensional Simulation of Adiabatic Shear Banding | 199 |
8.3 | Simulation with Adaptive Finite Element Methods | 213 |
8.4 | Adiabatic Shear Bands in the Plane Strain Stress State | 218 |
9 | Selected Topics in Impact Dynamics | 229 |
9.1 | Planar Impact | 230 |
9.2 | Fragmentation | 237 |
9.3 | Penetration | 244 |
9.4 | Erosion | 255 |
9.5 | Ignition of Explosives | 261 |
9.6 | Explosive Welding | 268 |
10 | Selected Topics in Metalworking | 273 |
10.1 | Classification of Processes | 273 |
10.2 | Upsetting | 276 |
10.3 | Metalcutting | 286 |
10.4 | Blanking | 293 |
Appendices | 297 | |
A | Quick Reference | 298 |
B | Specific Heat and Thermal Conductivity | 301 |
C | Thermal Softening and Related Temperature Dependence | 312 |
D | Materials Showing Adiabatic Shear Bands | 335 |
E | Specification of Selected Materials Showing Adiabatic Shear Bands | 341 |
F | Conversion Factors | 357 |
References | 358 | |
Author Index | 369 | |
Subject Index | 375 |