146 resultados para high optical-to-optical conversion efficiency
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
An optical parametric chirped-pulse amplification system is demonstrated to provide 32.9% pump-to-signal conversion efficiency . Special techniques are used to make the signal and pump pulses match with each other in both spectral and temporal domains. The broadband 9.5-mJ pulses are produced at the repetition rate of 1 Hz with the gain of over 1.9 x 10(8). The output energy fluctuation of 7.8% is achieved for the saturated amplification process against the pump fluctuation of 10%.
Resumo:
Using a quite uniformly side-around arranged compact pumping system, a high power Nd:YAG ceramic quasi-CW laser has been demonstrated with high optical-to-optical conversion efficiency over 50% for the first time. With 450 W quasi-CW stacked laser diode bars pumping at 808 run. 236 W Output at 1064 run was obtained and no saturation phenomena were observed.
Resumo:
A high-power continuous wave (cw) mode-locked Nd:YVO4 solid-state laser was demonstrated by use of a semiconductor absorber mirror (SAM). The maximum average output power was 8.1 W and the optic-to-optic conversion efficiency was about 41 %. At the maximum incident pump power, the pulse width was about 8.6 ps and the repetition rate was 130 MHz. Experimental results indicated that this absorber was suitable for high power mode-locked solid-state lasers. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
An electrical-to-green efficiency of more than 10% was demonstrated by intracavity-frequency-doubling a Q-switched diode-side-pumped Nd:YAG laser with a type II lithium triborate (LBO) crystal in a straight plano-concave cavity. An average power of 69.2 W at 532 nm was generated when electrical input power was 666 W. The corresponding electrical-to-green conversion efficiency is 10.4%. To the best of our knowledge, this is the highest electrical-to-green efficiency of second harmonic generation laser systems with side-pumped laser modules, ever reported. At about 66 W of green output power, the power fluctuation over 4 hours was better than +/-0.86%.
Resumo:
We build a compact high-conversion-efficiency and broadband tunable noncollinear optical parametric amplifier (OPA) in the infra-red (IR) pumped by a femtosecond Ti:sapphire CPA laser. The OPA consists of an internal seed of white-light continuum generator (WLG) and two noncollinear optical parametric amplifiers. The tunable wavelength range is from 1.2 mu m to 2.4 mu m for both signal and idle pulses. The total OPA efficiency in the last OPA stage reaches about 40% in a wider tunable spectral range (from 1.3 mu m to 1.7 mu m for signal pulse, from 1.5 mu m to 2.0 mu m for idle pulse respectively).
Resumo:
The objective of this study is to improve the stability of pumping source of optical parametric amplifier. Analysis by simulation leads to the conclusion that the stability of the second harmonic can be improved by using properly the intensity of fundamental light and corresponding length of the crystal. By the method of the noncollinear two-pass second harmonic or the tandem second harmonic, the efficient crystal length is extended to a proper value, and the stability of the second harmonic output has been improved two times more than that for the fundamental light, and the conversion-efficiency is about 70% in experiment. When the variation of the fundamental light is about 10%, the variation of the second harmonic intensity has been controlled within 5%. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A dynamic multichannel incoherent-to-coherent optical converter based on the photorefractive effect of SBN:Ce is described. A number of grating-encoded input images, illuminated by incoherent light, are projected onto the crystal to yield photoinduced phase gratings. Coherent positive replicas of these images are simultaneously reconstructed by a coherent read beam. A simple theoretical description of this converter and corresponding experimental results are presented.
Resumo:
By using quite uniformly nine-stacks side-around arranged compact pumping system, a high power Nd:YAG ceramic quasi-CW laser with high slope efficiency of 62% has been demonstrated. With 450 W quasi-CW stacked laser diode bars pumping at 808 nm, performance of the Nd: YAG ceramic laser with different output coupling mirrors has been investigated. Optimum output power of 236 W at 1064 nm was obtained and corresponding optical-to-optical conversion efficiency was as high as 52.5%. The laser system operated quite stably and no saturation phenomena have been observed, which means higher output laser power could be obtained if injecting higher pumping power. The still-evolving Nd: YAG ceramics are potential super excellent media for high power practical laser applications. (c) 2005 Optical Society of America.
Resumo:
We report a period continuously tunable, efficient, mid-infrared optical parametric oscillator (OPO) based on a fan-out periodically poled MgO-doped congruent lithium niobate (PPMgLN). The OPO is pumped by a Nd:YAG laser and a maximum idler output average power of 1.65 W at 3.93 mu m is obtained with a pump average power of 10.5 W, corresponding to the conversion efficiency of about 16% from the pump to the idler. The output spectral properties of the OPO with the fan-out crystal are analyzed. The OPO is continuously tuned over 3.78-4.58 mu m (idler) when fan-out periods are changed from 27.0 to 29.4 mu m. Compared with temperature tuning, fan-out period continuous tuning has faster tuning rate and wider tuning range.
Resumo:
A novel asymmetric broad waveguide diode laser structure was designed for high power conversion efficiency (PCE). The internal quantum efficiency, the series resistance, and the thermal resistance were theoretically optimized. The series resistance and the thermal resistance were greatly decreased by optimizing the thickness of the P-waveguide and the P-cladding layers. The internal quantum efficiency was increased by introducing a novel strain-compensated GaAs_0.9P_0.1/InGaAs quantum well. Experimentally, a single 1-cm bar with 20% fill factor and 900 μm cavity length was mounted P-side down on a microchannel-cooled heatsink, and a peak PCE of 60% is obtained at 26.3-W continuous wave output power.The results prove that this novel asymmetric waveguide structure design is an efficient approach to improve the PCE.
Resumo:
We propose a novel structure of planar optical configuration for implementation of the space-to-time conversion for femtosecond pulse shaping. The previous apparatuses of femtosecond pulse shaping are 4f Fourier-transforming type system that is usually large, expensive, difficult to align. The planar integration of free-space optical systems on solid substrates is an optical module with the attractive advantages of compact, reliable and robust. This apparatus is analyzed in details and the design of the particular lens for femtosecond pulse shaping based on planar optics is presented. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
In this paper, a highly efficient Ti:sapphire end-pumped 1 at.-% Nd:YAG ceramic laser that is comparable in efficiency with Nd:YAG single crystal lasers has been developed. Optical absorption and emission spectra for Nd:YAG ceramics have been measured. With 673-mW pumping, 295-mW laser output at 1064 nm has been obtained. The laser threshold is only 13 mW. Deducted the transmitted light, the corresponding optical-to-optical conversion efficiency is 58.4%. The lasing characteristics of Nd:YAG ceramic are nearly equal to those of Nd:YAG single crystal.
Resumo:
We developed a highly efficient diode side-pumped Nd:YAG ceramic laser with a diffusive reflector as an optical pump cavity. A maximum output power of 211.6W was obtained with an optical -to- optical conversion efficiency of 48.7%. This corresponds to the highest conversion efficiency in the side-pumped ceramic rod. Thermal effects of the Nd:YAG ceramic rod were analyzed in detail through the measurements of laser output powers and beam profiles near the critically unstable region. A M-2 beam quality factor of 18.7 was obtained at the maximum laser output power. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
利用1 064 nm的Nd∶YAG激光抽运振荡腔内的硝酸钡晶体,获得高效率、窄脉冲的喇曼激光输出.硝酸钡晶体由水溶液降温法生长,长度为48 mm.喇曼振荡腔由对抽运光、一阶、二阶斯托克斯光有不同反射率的双色平面镜构成.当抽运光功率达到4.5 W时,获得最高的一阶斯托克斯喇曼激光功率为1.48 W,相应的转换效率为32.9%,并测得斜率效率为40%.由于受激喇曼散射的作用,喇曼脉冲光由抽运脉冲光的19.8 ns压缩为2.4 ns,获得的喇曼激光脉冲波形具有的"上升沿陡峭、下降沿缓慢"的特性,对其形成过程作了
Resumo:
High-quality Nd:LuVO4 single crystal was successfully grown by Czochralski method. The assessment of the crystalline quality by the chemical etching method and Conoscope image was reported. The absorption spectra from 300 to 1000 nm and emission spectra from 960 to 1450 nm of Nd: LuVO4 were measured. Laser performance was achieved with Nd:LUVO4 crystal for the transition of F-4(3/2) -> I-4(11/2) (corresponding wavelength 1065.8 nm) in an actively Q-switched operation, and the average output power reached 5.42 W at a pulse repetition frequency (PRF) of 40 kHz under pump power of 18 W, giving an optical conversion efficiency of 30.1%. The pulse energy and peak power reached 138 mu J and 16.2 kW at PRF of 25 kHz under pump power of 14.2 W, and the pulse duration was 8.5 ns. (c) 2005 Elsevier B.V. All rights reserved.