112 resultados para heat of reaction
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
High melt strength polypropylene (HMSPP) was synthesized by in situ heat induction reaction, in which pure polypropylene (PP) powders without any additives were used as a basic resin and vinyl trimethoxysilane (VTMS) as a grafting and crosslinking agent. The grafting reaction of VTMS with PP was confirmed by FTIR. The structure and properties of HMSPP were characterized by means of various measurements. The content of grafted silane played a key role on the melt strength and melt flow rate (MFR) of HMSPP. With increasing the content of grafted silane, the melt strength of HMSPP increased, and the MFR reduced. In addition, due to the existence of cross-linking structure, the thermal stability and tensile strength of HMSPP were improved compared with PP.
Resumo:
Alumina and alumina/mullite composites with mullite content of 0.96-8.72 vol.% were subjected to an abrasive wear test under loads of 0.1-2.0 N with a ball-on-disc apparatus. The wear rate and area fraction of pullout f(po) on the worn surfaces were measured. The wear resistances of the alumina/mullite composites were better by a factor of 1-2 than that of pure alumina. The main wear mechanism of alumina is fracture wear, and for alumina/mullite composites, fracture wear and plastic wear mechanisms work together. The influence of mechanical properties on wear resistance was estimated by Evans' method. It was found that the wear rate depends on f(po), and the primary reason for the better wear resistance of alumina/mullite composites is the reduction off, induced by fracture mode transition. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper discovers some shortcomings in the algorithm for the incorporation of Si into GaAs in the GaAs VPE process. These faults arise from neglecting a link, the compatibility relationship, in chemical thermodynamics. The meaning of said relationship is as follows: In an equilibrium complex system, each species can only contribute one and the same quantity (its equilibrium quantity) to the different equilibria of the various reactions involving it; yet even under this restriction, every equilibrium constant is satisfied, and all the reaction equilibria coexist compatibly in the system. Only by adding the relationship can the equilibrium theory for the complex system be complete. This paper also tells its position in chemical thermodynamics. Such a compatibility concept directly leads to an equivalence principle: In a complex system, a certain species can usually be simultaneously formed by many chemical reactions; when the system has reached equilibrium under fixed environmental conditions, the equilibrium quantity of said species calculated according to each chemical equation of these reactions will be equal and the various reaction approaches will be equivalent, provided that for all the reactants and all the other products of these reactions their equilibrium quantities in the system are respectively taken as corresponding knowns for the calculations, which is extremely useful for seeking a functional relation among the species' equilibrium quantities in a system (Si contamination is one of the examples). Under the guidance of those arguments, the various schools' algorithms for the Si contamination can be uniformized and simplified, and the contamination quantity relation between Si and O, two very important impurities, is found.
Resumo:
An effective Mo-1 V(0.3)Te(0.23)Nb(0.12)Ox catalysts for the selective oxidation of propane to acrylic acid was successfully prepared by using rotavap method. The catalyst was characterized by XRD and shown to contain (V0.07Mo0.93)(5)O-14, (Nb0.09Mo0.91)O-2.8,3MoO(2)(.)Nb(2)O(5), Mo5TeO16 and/or TeMo4O13, Te4Nb2O13 and a new TeMO (TeVMoO or TeVNbMoO; M = Mo, V and Nb) crystalline phase as the major phase. Regardless of the intrinsic catalytic characteristics of the catalyst, the external reaction conditions would have strong effects on the catalytic performance for propane oxidation. So in this paper, the effects of reaction conditions were investigated and discussed, including temperature, space velocity, V(air)/V(C3H8) ratio and V(steam)/V(C3H8) ratio. A stability test was also carried out on Mo1V0.3Te0.23Nb0.12Ox catalyst. The experimental run was performed during 100 h under the optimized reaction conditions. During the 100 h of operation, propane conversion and acrylic acid selectivity remained at about 59 and 64%, respectively. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
On the basis of DSC measurements, the Delta H-f(0) values of the fusion heat for PEEKK-PEBEKK copolymers with various biphenyl contents were obtained by using thermodynamics statistical theory proposed by Flory and graphical method of the specific volume-fusion heat. The results reveal that Delta H-f(0) values determined by these two methods for PEEKK-PEBEKK copolymers with various biphenyl content are nearly the same, and that Delta H-f(0) values are closely dependent on biphenyl content. Delta H-f(0) value is minimum at n(B)=0.35.
Resumo:
[Cp3Yb] reacts with HOR (Cp = C5H5; R = CH2CH=CH2, CH2CH2Me) in thf (thf = tetrahydrofuran)at room temperature to give complexes [{Cp2Yb(mu-OR)}2], which are dehydrogenated to yield the new complex [{Cp2Yb(mu-OCH=C=CH2)}2] in refluxing thf solution; the X-ray crystal structure shows that the new complex is dimeric with oxygen atoms as bridging groups.