6 resultados para gravimetry
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Perfectly hydrophobic (PHO) coatings consisting of silicone nanofibers have been obtained via a solution process using methyltrialkoxysilanes as precursors. On the basis of thermal gravimetry and differential thermal analysis (TG-DTA) and Fourier transform infrared spectroscopy (FTIR) results, the formula of the nanofibers was tentatively given and a possible growth mechanism of the nanofibers was proposed. Because of the low affinity between the coatings and the small water droplet, when using these coatings as substrate for collecting water vapor, the harvesting efficiency could be enhanced as compared with those from bare glass substrate for more than 50% under 25 degrees C and 60-90% relative humidity. By removing the surface methyl group by heat treatment or ultraviolet (UV) irradiation, the as-prepared perfectly hydrophobic surface can be converted into a superhydrophilic surface.
Resumo:
A new vinyl acyl azide monomer, 4-(azidocarbonyl) phenyl methacrylate, has been synthesized and characterized by NMR and FTIR spectroscopy. The thermal stability of the new monomer has been investigated with FTIR and thermal gravimetry/differential thermal analysis (TG/DTA), and the monomer has been demonstrated to be stable below 50 degrees C in the solid state. The copolymerizations of the new monomer with methyl acrylate have been carried out at room temperature under Co-60 gamma-ray irradiation in the presence of benzyl 1-H-imidazole-1-carbodithioate. The results show that the polymerizations bear all the characteristics of controlled/living free-radical polymerizations, such as the molecular weight increasing linearly with the monomer conversion, the molecular weight distribution being narrow (< 1.20), and a linear relationship existing between In([M](0)/[M]) and the polymerization time. The data from H-1 NMR and FTIR confirm that no change in the acyl azide groups has occurred in the polymerization process and that acyl azide copolymers have been obtained. The thermal stability of the polymers has also been investigated with TG/DTA and FTIR.
Resumo:
An aromatic polyimide was synthesized via a one-step polycondensation reaction between biphenyltetracarboxylic dianhydride (BPDA) and 4,4'-oxydianiline (ODA) in p-chlorophenol. The polyimide (BPDA-ODA) solution dopes were spun into fibers by means of dry-jet wet spinning. The as-spun fibers were drawn and treated in heating tubes for improving the mechanical properties. The thermal treatment on the fibers resulted in a relatively high tensile strength and modulus. Thermal mechanical analysis (TMA) was employed to study the linear coefficient of thermal expansion (CTE). Thermal gravimetry analysis (TGA) spectra showed that the BPDA-ODA fibers possessed an excellent property of thermo-oxidative degradation resistance. The sonic modulus E-s of the polyimide fibers was measured.
Resumo:
The PVP/lanthanum nitrate/zirconium oxychloride (PVP-precursor) nanofiber was prepared by electrospinning technique. Lanthanum zirconate (La2Zr2O7, LZ) in the nanofiber is formed after calcination at 800 degrees C and the nanofiber with pyrochlore structure and a diameter of 100-500 nm can be obtained by calcination of the above precursor fiber at 1000 degrees C for 12 h. The surface of the fiber is rough but the continuous microstructure is still maintained after calcination. LZ fibers stack randomly, resulting in a structure with a low contact area between the fibers. This special structure makes the fiber to have a high resistance to sintering at elevated temperatures. The BET (Brunauer-Emmett-Teller) specific surface areas of the LZ fiber and powder calcined at different temperatures are shown in this paper, and the fiber was characterized by TG-DTA (thermal gravimetry-differential thermal analysis), XRD (X-ray diffraction), N-2 absorption-desorption porosimetry and SEM (scanning electron microscopy).
Resumo:
[(C6H5CH2C5H4)(2)GdCl . THF](2) (1) and (C6H5CH2C5H4)(2)ErCl . THF (2) were prepared by the reaction of LnCl(3) (Ln=Gd, Er) with benzylcyclopentadienyl sodium in THF and characterized by elemental analysis, IR, H-1 NMR, C-13 NMR, MS and thermal gravimetry. The crystal structures of both compounds were determined. Complex 1 is dimeric and its structure belongs to the monoclinic, P2(1)/c space group with a=1.1432(2), b=1.2978(2), c=1.7604(3) nm, beta=108.75(2), V=2.4732(9) nm(3), Z=2(four monomers), D-c=1.54 g . cm(-3). R=0.0342 and R(w)=0.0362. Complex 2 is monomer and its structure belongs to the orthorhombic, P2(1)2(1)2(1) space group with a=0.8645(2), b=1.1394(3), c=2.5289(4) nm, V=2.4919(9) nm(3), Z=4, D-c=1.56 g . cm(-3). R=0.0514, R(w)=0.0529. The determination of the crystal structure shows that in complex 1 the benzyl groups on the cyclopentadienyls coordinated to Gd3+ are located in the opposite direction (139 degrees); in complex 2 the benzyl groups on the cyclopentadienyls coordinated to Er3+ are located in the same direction (6.5 degrees).