12 resultados para granular dimensions
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
By means of experiments of instability of a uniform cylindrical soap film, Boys had showed that the bubble molded by the film is unstable when its length is greater than its circumference. Recently that is generally called the Rayleigh Criterion. In this paper, a linear theory in hydrodynamics is applied to analyze the stability of the cylindrical soap film supported by two equal size disks; all conditions of the stationary wave on the end plates of two disks are given. From here we get that the Rayleigh Criterion on the stability of the cylindrical soap film is proved.
Resumo:
The analytical expressions of the fractal dimensions for wetting and non-wetting phases for unsaturated porous media are derived and are found to be a function of porosity, maximum and minimum pore sizes as well as saturation. There is no empirical constant in the proposed fractal dimensions. It is also found that the fractal dimensions increase with porosity of a medium and are meaningful only in a certain range of saturation S-w, i.e. S-w > S-min for wetting phase and S-w < S-max for non-wetting phase at a given porosity, based on real porous media for requirements from both fractal theory and experimental observations. The present analysis of the fractal dimensions is verified to be consistent with the existing experimental observations and it makes possible to analyze the transport properties such as permeability, thermal dispersion in unsaturated porous media by fractal theory and technique.
Resumo:
The effective refractive index of a kind of granular composite, which consists of granular metallic and magnetic inclusions with different radius embedded in a host medium, is theoretically investigated. Results show that for certain volume fractions of these two inclusions, the negative permittivity peak shifts to low frequency and the peak value increases with increasing radius ratio of the radius of magnetic granulae to that of metallic granulae. Simultaneously, peak value of permeability decreases with the radius ratio, and value peak shifts to high frequency with increasing volume fraction of magnetic inclusion. Therefore, the radius ratio can affect the effective refractive index considerably, and it is found that by adjusting the radius ratio, the refractive index may change between negative and positive values for certain volume fractions of the two inclusions. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Previous studies of the dorsomedial frontal cortex (DMF) and the prefrontal cortex (PF) have shown that, when monkeys respond to nonspatial features of a discriminative stimulus (e.g., color) and the stimulus appears at a place unrelated to the movement t
Resumo:
The dimensional crossover phenomena of heat conduction is studied by a two-dimensional (2D) Fermi-Pasta-Ulam lattice. The 2D divergence law of the thermal conductivity is confirmed by the simulations results. The divergence law of the thermal conductivity will change from the 2D class to 1D class as delta=N-y/N-x decreases, here N-y is the size in transverse direction and N-x in longitude direction. The simulation's results suggest that the dimensional crossover happens in delta(*)-> 0 as N-x ->infinity.
Resumo:
Banded spherulite patterns are simulated in three dimensions by means of a Coupled Logistic map lattice model. The patterns obtained by numerical calculation are consistent with those in experiments. The simulation results also indicate that the hand spacing is decreased with the increase of parameter mu in the Logistic map and increased with the increase of the coupling parameter e for cube lattices, and increased with the increase of the thickness of the lattice for polymer film, which is quite similar to the results in some experiments. Spiral pattern in three dimensions is also shown in this paper, which helps us understand the form of banded spherulite in polymers.
Resumo:
The transformation field method (TFM) originated from Eshelby's transformation field theory is developed to estimate the effective permittivity of an anisotropic graded granular composite having inclusions of arbitrary shape and arbitrary anisotropic grading profile. The complicated boundary-value problem of the anisotropic graded composite is solved by introducing an appropriate transformation field within the whole composite region. As an example, the effective dielectric response for an anisotropic graded composite with inclusions having arbitrary geometrical shape and arbitrary grading profile is formulated. The validity of TFM is tested by comparing our results with the exact solution of an isotropic graded composite having inclusions with a power-law dielectric grading profile and good agreement is achieved in the dilute limit. Furthermore, it is found that the inclusion shape and the parameters of the grading profile can have profound effect on the effective permittivity at high concentrations of the inclusions. It is pointed out that TFM used in this paper can be further extended to investigate the effective elastic, thermal, and electroelastic properties of anisotropic graded granular composite materials.