8 resultados para gossip, dissemination, network, algorithms
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
This paper presents a systematic description of the methods for calibrating microwave network analyzer and test fixtures, and discusses the problems arising in the calibration. The general criteria for choosing calibration standards and corresponding algorithms are discussed and suggestions to overcome these problems and improve the calibration accuracy are also given. It has been found that for reciprocal test fixtures, the four equations obtained with the thru standard can be used at the same time. Meanwhile, the calibration accuracy can be improved. It has been shown that using the same calibration procedures but different algorithms may lead to the occurrence of frequency limitation.
Resumo:
Based on the conventional through-short-match (TSM) method, an improved TSM method has been proposed in this Letter. This method gives an analytical solution and has almost all the advantages of conventional TSM methods. For example, it has no phase uncertainty and no bandwidth limitation. The experimental results show that the accuracy can be significantly improved with this method. The proposed theory can be applied to the through-open-match (TOM) method. (C) 2002 Wiley Periodicals. Inc.
Resumo:
This paper describes the ground target detection, classification and sensor fusion problems in distributed fiber seismic sensor network. Compared with conventional piezoelectric seismic sensor used in UGS, fiber optic sensor has advantages of high sensitivity and resistance to electromagnetic disturbance. We have developed a fiber seismic sensor network for target detection and classification. However, ground target recognition based on seismic sensor is a very challenging problem because of the non-stationary characteristic of seismic signal and complicated real life application environment. To solve these difficulties, we study robust feature extraction and classification algorithms adapted to fiber sensor network. An united multi-feature (UMF) method is used. An adaptive threshold detection algorithm is proposed to minimize the false alarm rate. Three kinds of targets comprise personnel, wheeled vehicle and tracked vehicle are concerned in the system. The classification simulation result shows that the SVM classifier outperforms the GMM and BPNN. The sensor fusion method based on D-S evidence theory is discussed to fully utilize information of fiber sensor array and improve overall performance of the system. A field experiment is organized to test the performance of fiber sensor network and gather real signal of targets for classification testing.
Resumo:
Double weighted neural network; is a kind of new general used neural network, which, compared with BP and RBF network, may approximate the training samples with a move complicated geometric figure and possesses a even greater approximation. capability. we study structure approximate based on double weighted neural network and prove its rationality.
Resumo:
Dynamic Power Management (DPM) is a technique to reduce power consumption of electronic system. by selectively shutting down idle components. In this article we try to introduce back propagation network and radial basis network into the research of the system-level policies. We proposed two PAY policies-Back propagation Power Management (BPPM) and Radial Basis Function Power management (RBFPM) which are based on Artificial Neural Networks (ANN). Our experiments show that the two power management policies greatly lowered the system-level power consumption and have higher performance than traditional Power Management(PM) techniques-BPPM is 1.09-competitive and RBFPM is 1.08-competitive vs. 1.79,145,1.18-competitive separately for traditional timeout PM, adaptive predictive PM and stochastic PM.
Resumo:
Processing networks are a variant of the standard linear programming network model which are especially useful for optimizing industrial energy/environment systems. Modelling advantages include an intuitive diagrammatic representation and the ability to incorporate all forms of energy and pollutants in a single integrated linear network model. Added advantages include increased speed of solution and algorithms supporting formulation. The paper explores their use in modelling the energy and pollution control systems in large industrial plants. The pollution control options in an ethylene production plant are analyzed as an example. PROFLOW, a computer tool for the formulation, analysis, and solution of processing network models, is introduced.
Resumo:
One of the most important kinds of queries in Spatial Network Databases (SNDB) to support location-based services (LBS) is the shortest path query. Given an object in a network, e.g. a location of a car on a road network, and a set of objects of interests, e.g. hotels,gas station, and car, the shortest path query returns the shortest path from the query object to interested objects. The studies of shortest path query have two kinds of ways, online processing and preprocessing. The studies of preprocessing suppose that the interest objects are static. This paper proposes a shortest path algorithm with a set of index structures to support the situation of moving objects. This algorithm can transform a dynamic problem to a static problem. In this paper we focus on road networks. However, our algorithms do not use any domain specific information, and therefore can be applied to any network. This algorithm’s complexity is O(klog2 i), and traditional Dijkstra’s complexity is O((i + k)2).
Resumo:
A new algorithm based on the multiparameter neural network is proposed to retrieve wind speed (WS), sea surface temperature (SST), sea surface air temperature, and relative humidity ( RH) simultaneously over the global oceans from Special Sensor Microwave Imager (SSM/I) observations. The retrieved geophysical parameters are used to estimate the surface latent heat flux and sensible heat flux using a bulk method over the global oceans. The neural network is trained and validated with the matchups of SSM/I overpasses and National Data Buoy Center buoys under both clear and cloudy weather conditions. In addition, the data acquired by the 85.5-GHz channels of SSM/I are used as the input variables of the neural network to improve its performance. The root-mean-square (rms) errors between the estimated WS, SST, sea surface air temperature, and RH from SSM/I observations and the buoy measurements are 1.48 m s(-1), 1.54 degrees C, 1.47 degrees C, and 7.85, respectively. The rms errors between the estimated latent and sensible heat fluxes from SSM/I observations and the Xisha Island ( in the South China Sea) measurements are 3.21 and 30.54 W m(-2), whereas those between the SSM/ I estimates and the buoy data are 4.9 and 37.85 W m(-2), respectively. Both of these errors ( those for WS, SST, and sea surface air temperature, in particular) are smaller than those by previous retrieval algorithms of SSM/ I observations over the global oceans. Unlike previous methods, the present algorithm is capable of producing near-real-time estimates of surface latent and sensible heat fluxes for the global oceans from SSM/I data.