3 resultados para glutaminase

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

谷氨酰胺酶是催化谷氨酰胺分解为谷氨酸的氨基酸水解酶。它广泛存在于真核生物和原核生物中,在许多微生物和哺乳动物的氮代谢过程中起重要作用。但蓝藻中谷氨酰胺酶的酶学特征及生理功能尚不清楚,仅在一些蓝藻的基因组中发现有假定谷氨酰胺酶基因,这些基因编码的未知功能蛋白中有谷氨酰胺酶功能结构域,如集胞藻6803基因组中的slr2079基因。因此,本研究以模式蓝藻集胞藻6803 为研究对象,研究蓝藻谷氨酰胺酶的酶学特征及其生理功能。 为研究蓝藻谷氨酰胺酶的酶学特征,本研究克隆了集胞藻6803 slr2079基因,并在大肠杆菌中融合表达,经Ni-NTA亲合柱纯化后,通过对重组蛋白进行酶活测定及动力学分析,发现Slr2079蛋白是以谷氨酰胺为唯一催化底物的谷氨酰胺酶。 重组酶Slr2079的最适反应pH为9;最适反应温度为37C - 42C。该酶和绝大多数微生物源性的谷氨酰胺酶一样均为非磷酸依赖型。有趣的是该酶活性受Na+调节,而这种调节是通过提高对底物的亲和力来实现的。 为研究蓝藻谷氨酰胺酶在细胞内的生理功能,本研究通过基因插入失活,构建了缺失slr2079基因的集胞藻6803突变体,并对其进行生理、生化研究。在正常生长条件下,突变体和野生型蓝藻的生长未见差异,表明该基因不是集胞藻6803生长所必需的基因。但在700 mM NaCl胁迫条件下,突变体的生长速率比野生型快1.25倍。半定量RT-PCR结果显示,几个盐胁迫相关基因在突变体与野生型中的表达有所不同:与耐受盐胁迫的相关基因slr1608 (gdhB) 和slr1751 (prc)在突变体中表达提高,而盐敏感的基因sll0262 (desD) 和 slr0213 (guaA)在突变体中表达下降。由于重组的Slr2079具有谷氨酰胺酶活性,因此我们试图通过检测在蓝藻中参与氨同化作用的关键酶谷氨酸合成酶和谷氨酰胺合成酶在集胞藻6803中的表达情况来揭示Slr2079在集胞藻6803谷氨酰胺代谢中的生理功能。半定量RT-PCR结果显示,仅谷氨酸合成酶在突变体中表达提高,而谷氨酰胺合成酶表达未见明显变化。这些研究结果表明,在集胞藻6803中,Slr2079可能是通过调节与盐胁迫相关基因的表达来参与应对盐胁迫,而在氮代谢中起次要作用。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

蓝藻是唯一可以进行有氧光合作用的原核生物,是水生食物链主要的初级生产者。氮素是蓝藻细胞必需的大量营养元素之一,揭示蓝藻如何应对环境中氮素的变化、维持自身碳氮平衡的分子机理,对深刻理解蓝藻与环境的相互作用、有效促进或控制蓝藻的生长与繁殖,有重要的理论和实践意义。已有的研究发现,蓝藻细胞的碳氮平衡主要是通过调控氨同化途径中的关键酶类实现。但先前的研究主要集中在固氮蓝藻谷氨酰胺合成酶(GS)-谷氨酸合成酶(GOGAT)循环的特性分析方面,而对催化谷氨酰胺水解生成谷氨酸和氨的主要酶之一谷氨酰胺酶的报道极少,其分子特性及生理学意义尚不明了。因此,本论文以模式固氮蓝藻鱼腥藻7120 和非固氮蓝藻集胞藻6803 为材料,采用分子生物学和生物化学方法,对蓝藻谷氨酰胺酶进行体外研究,并对其生物学功能进行了初步探讨,获得了如下主要结果:1)对体外重组蛋白的酶活性检测发现,两类蓝藻基因组编码的假定性谷氨酰胺酶,均具有谷氨酰胺酶催化活性,表明基因组注释是准确的;2)固氮蓝藻重组酶(All2934、All4774)与非固氮蓝藻重组酶(Slr2079)酶学特征差异显著,具有不同的最适pH、温度及底物亲和力;3)固氮蓝藻重组酶All2934 催化活性受磷酸盐的激活,而非固氮蓝藻重组酶Slr2079 在高Na+浓度下活性更高;4)RT-PCR 分析结果表明,在正常培养条件下,两类蓝藻的谷氨酰胺酶基因在细胞内均有表达;5)在缺氮培养条件下,固氮蓝藻谷氨酰胺酶基因all2934 的表达水平发生明显变化,而all4774 保持相对稳定,表明前者可能在这类细胞应对氮饥饿过程中起重要作用;6)在正常培养条件下,非固氮蓝藻谷氨酰胺酶基因的缺失突变体(Δslr2079)与野生型表型相似,但在盐胁迫条件下,突变体生长速率及光合放氧活性均高于野生型,表明该基因可能在提高非固氮蓝藻细胞高盐耐受力方面起负调控作用。上述重要发现,不仅初步揭示了光合自氧生物谷氨酰胺酶体外重组酶的分子特征,也为进一步研究谷氨酰胺酶在蓝藻细胞内的专一性功能奠定了重要基础。