250 resultados para genetic diveristy
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
大熊猫(Ailuropoda melanoleuca)是我国特有的濒危野生动物之一,迁地保护已经成为大熊猫物种保护的一个重要方面。当前大熊猫圈养种群数量增长很快,但是其“多雄配一雌”的交配(配种方式),以及生产过程中记录遗失等原因,造成圈养种群普遍存在亲子关系不清、谱系混乱等问题。为了加强遗传管理,有必要进行亲子关系鉴定、完善谱系;还需要检测种群的基因多样性水平,并在此基础上提出相应的遗传管理建议。 本研究应用9个具有高度多态性的大熊猫微卫星标记,对来自成都大熊猫繁育研究基地2006和2007年度出生的17只大熊猫幼崽及其全部候选父母共37个样品做了基因型分析;然后应用最大似然法,判断幼崽的父-子关系。同时,还对来自卧龙大熊猫保护研究中心的31只大熊猫个体也做了基因分型。将两个种群的数据进行比较:1)等位基因多样性和杂合度水平;2)通过F统计法,分析两个种群的遗传分化水平;3)通过遗传距离法,对所有个体进行聚类分析。 研究结果表明: 1)在母子关系不清的情况下,9个微卫星标记联合的父亲鉴定排除概率E为0.940090;而在母子关系确实的条件下,E= 0.993933。由于本研究中所有后代的母亲都是清楚的,因此这9个微卫星位点能够有效用于圈养大熊猫的亲子鉴定。似然法分析也表明,本研究所获得的亲子鉴定结果置信度在95%以上。 2)2005年种源交换后,成都大熊猫的等位基因多样性和杂合度水平都略高于卧龙种群(但没有达到显著水平),两个种群间的遗传分化水平也有所降低。但是,与卧龙相比,成都种群面临较大的近交压力。 基于以上研究结果,我们建议:进一步加强种源交换和基因交流,把两个种群当作一个遗传单元(MU)来进行管理。 Giant panda (Ailuropoda melanoleuca) is one of the endangerd wildlife endemic to China, and the ex-situ breeding become more and more important for the conservation of this speices. Although the captive population is expanding rapidly, the uncertainty occurs because the paternities of cubs are not clear due to the breeding pattern of “multiple male to single female,”as well as the records lost, resulting in errors in the studbook. For this reason, the paternity of the cubs and the genetic diversity of the captive giant pandas should be tested carefully to get information for the genetic management in the future. 9 polymorphism microsatellite markers were used to do paternity assignment for the 17 cubs born in 2006 and 2007 from Chengdu Research Base for Giant Panda Breeding (CGB) based on the maximum-likelihood methods. A total of 37 individuals were sampled, including all the candidate dams and sires. These samples were also used for comparing with 31 individuals sampling from Wolong China Research and Conservation Center for the Giant Panda (WCG). The comparing indexes were: 1) Allelic diversity and heterozygosity; 2) Genetic differentiation based on F-statistic; 3) Cluster analysis based on genetic distance. The results show that: 1) If the mother is unkown, the combined exclusion probability using these 9 loci is 0.940090. If the mother is known then the exclusion probability is 0.993933. Since the dam-offspring relationship is known in captive populations, the results could resolve unknown paternities in the study. And the confidence level of the results is 95% based on the likelihood methods. 2) The allelic diversity and the heterozygosity of CGB were higher than WCG (n ot significant), and the genetic differentiation was reduced a little since the genetic exchange between two populations in 2005. However, the population of CGB will be threatening by inbreeding seriously than that of WCG. From above, we suggest to reiforce the genetic exchange and geneflow between CGB and WCG, and these two populations should be regarded as one genetic management unit (MU).
Resumo:
We show that the peak intensity of single attosecond x-ray pulses is enhanced by 1 or 2 orders of magnitude, the pulse duration is greatly compressed, and the optimal propagation distance is shortened by genetic algorithm optimization of the chirp and initial phase of 5 fs laser pulses. However, as the laser intensity increases, more efficient nonadiabatic self-phase matching can lead to a dramatically enhanced harmonic yield, and the efficiency of optimization decreases in the enhancement and compression of the generated attosecond pulses. (c) 2006 Optical Society of America.
Optimization of high-order harmonic by genetic algorithm for the chirp and phase of few-cycle pulses
Resumo:
The brightness of a particular harmonic order is optimized for the chirp and initial phase of the laser pulse by genetic algorithm. The influences of the chirp and initial phase of the excitation pulse on the harmonic spectra are discussed in terms of the semi-classical model including the propagation effects. The results indicate that the harmonic intensity and cutoff have strong dependence on the chirp of the laser pulse, but slightly on its initial phase. The high-order harmonics can be enhanced by the optimal laser pulse and its cutoff can be tuned by optimization of the chirp and initial phase of the laser pulse.
Resumo:
An optimal feedback control of two-photon fluorescence in the ethanol solution of 4-dicyanomethylene-2-methyl-6-p-dimethyl-amiiiostryryl-4H-pyran (DCM) using pulse-shaping technique based on genetic algorithm is demonstrated experimentally. The two-photon fluorescence of the DCM ethanol solution is enhanced in intensity of about 23%. The second harmonic generation frequency-resolved optical gating (SHG-FROG) trace indicates that the effective population transfer arises from the positively chirped pulse. The experimental results appear the potential applications of coherent control to the complicated molecular system.
Resumo:
Plasma equilibrium geometry has a great influence on the confinement and magnetohydrodynamic stability in tokamaks. The poloidal field (PF) system of a tokamak should be optimized to support the prescribed plasma equilibrium geometry. In this paper, a genetic algorithm-based method is applied to solve the optimization of the positions and currents of tokamak PF coils. To achieve this goal, we first describe the free-boundary code EQT Based on the EQT code, a genetic algorithm-based method is introduced to the optimization. We apply this new method to the PF system design of the fusion-driven subcritical system and plasma equilibrium geometry optimization of the Experimental Advanced Superconducting Tokamak (EAST). The results indicate that the optimization of the plasma equilibrium geometry can be improved by using this method.
Resumo:
An optimal feedback control of two-photon fluorescence in the Coumarin 515 ethanol solution excited by shaping femtosecond laser pulses based on genetic algorithm is demonstrated experimentally. The two-photon fluorescence intensity can be enhanced by similar to 20%. Second harmonic generation frequency-resolved optical gating traces indicate that the optimal laser pulses are positive chirp, which are in favor of the effective population transfer of two-photon transitions. The dependence of the two-photon fluorescence signal on the laser pulse chirp is investigated to validate the theoretical model for the effective population transfer of two-photon transitions. The experimental results appear the potential applications in nonlinear spectroscopy and molecular physics. (c) 2005 Elsevier B.V. All rights reserved.