5 resultados para generalized additive models
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
研究植被、物种分布与环境的关系一直是生态学中的重点。长期以来,在全球变化与陆地生态系统的研究中,主要研究重点是对大尺度植被分布的模拟和预测,并建立了大量的气候-植被分布关系模型。而对于物种潜在分布的模拟和预测,国内外相关的研究较少。近年来,随着统计技术和地理信息系统的发展,用于预测物种分布的统计模型技术得到了迅速的发展。统计模型技术已被广泛应用于生物地理分布、植物群落、生物多样性、气候变化影响评估等方面。 本论文基于当前在物种分布研究中应用广泛的广义线性模型、广义加法模型及分类回归树3种统计模型技术,对我国常见树种的地理分布进行模拟分析,并比较不同模型模拟精度的优劣,将模拟精度较高的模型应用于预测未来气候情景下我国几种主要树种的未来潜在地理分布。 基于建立的广义线性模型(GLM)、二次项逐步回归广义线性模型(SGLM)、广义加法模型(GAM)和分类回归树(CART)4个模型对我国20种常见树种地理分布进行模拟,结果表明,4个模型均有较高的模拟精度。GAM的模拟精度最高;添加二次项并进行逐步回归有效的提高了GLM的模拟精度;CART是一种基于规则的模型技术,模拟结果比GLM稍好,比GAM略差。 对不同树种的模拟分析表明,4个模型对于主要分布在暖温带落叶阔叶林区域的油松、辽东栎分布的模拟结果较差;GLM对分布在温带针阔混交林中红松、蒙古栎、胡桃楸和糠椴的模拟结果不太理想;4个模型对分布在中国亚热带常绿阔叶林区域的树种均表现出较高的模拟精度;对广布种也表现出很高的模拟精度。 结合地理信息系统,以地图形式将青冈、油松的模拟结果表示出来。结果表明:地理信息系统直观的反映出了模型模拟结果差异。4个模型均能很好模拟青冈的分布,且模拟结果接近;而对油松分布模拟结果4个模型均不甚理想,以GLM最差。这些结果与模型模拟评估结果相吻合。 在未来气候变化情景下,基于4个模型模拟结果优劣,以我国三种主要造林树种马尾松、油松、红松和两种常见树种青冈、蒙古栎为研究对象,分析其未来变化趋势。结果表明,未来气候变化情景下,对于马尾松而言,4个模型均预测马尾松在基本保持原有分布的基础上,其未来潜在分布区域均有所扩大,且有向西和向北扩展的趋势;对于油松而言,基于GLM、SGLM和GAM3个模型,油松的未来潜在分布除有北移的趋势外,其分布区还将向东北和西南两个方向扩展;对于红松而言,基于SGLM、GAM和CART3个模型的预测结果较为接近,即红松的未来潜在分布区域将有所减少;对蒙古栎而言,4个模型预测蒙古栎未来分布均将向西扩展;对青冈而言,4个模型预测青冈能基本保持其原有分布区,并向西和向北扩展,其中CART预测结果还表明,青冈在广东南部及广西南部的分布区域将消失。
Resumo:
潜在植被的分布预测与制图对植被恢复规划具有重要的指导价值.利用广义相加模型(generalized additive model,GAM),结合GIS空间分析技术和环境梯度分层采样技术,为延河流域24个地带性物种建立了分布模型,并在考虑群落内部物种种间关系及其分布概率的基础上,对物种分布进行运算,模拟预测了延河流域37种植物群落的分布状况和延河流域的潜在植被分布.结果表明:研究区植被分布预测值与实际调查值间的差异不显著,预测的植被空间分布较好地反映了延河流域潜在的植被分布状况,表明该模型具有较好的预测能力,对于区域植被恢复的目标设定和恢复规划具有重要意义.
Resumo:
The beam lattice-type models, such as the Euler-Bernoulli (or Timoshenko) beam lattice and the generalized beam (GB) lattice, have been proved very effective in simulating failure processes in concrete and rock due to its simplicity and easy implementation. However, these existing lattice models only take into account tensile failures, so it may be not applicable to simulation of failure behaviors under compressive states. The main aim in this paper is to incorporate Mohr-Coulomb failure criterion, which is widely used in many kinds of materials, into the GB lattice procedure. The improved GB lattice procedure has the capability of modeling both element failures and contact/separation of cracked elements. The numerical examples show its effectiveness in simulating compressive failures. Furthermore, the influences of lateral confinement, friction angle, stiffness of loading platen, inclusion of aggregates on failure processes are respectively analyzed in detail.
Resumo:
The effective stress principle has been efficiently applied to saturated soils in the soil mechanics and geotechnical engineering practice; however, its applicability to unsaturated soils is still under debate. The appropriate selection of stress state variables is essential for the construction of constitutive models for unsaturated soils. Owing to the complexity of unsaturated soils, it is difficult to determine the deformation and strength behaviors of unsaturated soils uniquely with the previous single-effective-stress variable theory and two-effective-stress-variable theory in all the situations. In this paper, based on the porous media theory, the specific expression of work is proposed, and the effective stress of unsaturated soils conjugated with the displacement of the soil skeleton is further derived. In the derived work and energy balance equations, the energy dissipation in unsaturated soils is taken into account. According to the derived work and energy balance equations, all of the three generalized stresses and the conjugated strains have effects on the deformation of unsaturated soils. For considering these effects, a principle of generalized effective stress to describe the behaviors of unsaturated soils is proposed. The proposed principle of generalized effective stress may reduce to the previous effective stress theory of single-stress variable or the two-stress variables under certain conditions. This principle provides a helpful reference for the development of constitutive models for unsaturated soils.
Resumo:
Various concepts have been proposed or used in the development of rheological models for debris flow. The earliest model developed by Bagnold was based on the concept of the “dispersive” pressure generated by grain collisions. Bagnold’s concept appears to be theoretically sound, but his empirical model has been found to be inconsistent with most theoretical models developed from non-Newtonian fluid mechanics. Although the generality of Bagnold’s model is still at issue, debris-flow modelers in Japan have generally accepted Takahashi’s formulas derived from Bagnold’s model. Some efforts have recently been made by theoreticians in non-Newtonian fluid mechanics to modify or improve Bagnold’s concept or model. A viable rheological model should consist both of a rate-independent part and a rate-dependent part. A generalized viscoplastic fluid (GVF) model that has both parts as well as two major rheological properties (i.e., the normal stress effect and soil yield criterion) is shown to be sufficiently accurate, yet practical, for general use in debris-flow modeling. In fact, Bagnold’s model is found to be only a particular case of the GVF model. Analytical solutions for (steady) uniform debris flows in wide channels are obtained from the GVF model based on Bagnold’s simplified assumption of constant grain concentration.