11 resultados para gene loss
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Zebrafish has been generally considered as an excellent model in case of drug screening, disease model establishment, and vertebrate embryonic development study. In this work, the ability of human cytomegalovirus immediate early promoter (CMV promoter)-driven short hairpin RNA (shRNA) expression vector to induce shRNA against VEGF gene in zebrafish was tested, and its effect on vascular development was assed, too. Using RT-qPCR, blood vessel staining, and in situ hybridization, we confirmed certain transcriptional activity and down regulation of gene expression by the vector. In situ hybridization analysis indicated selective inhibition of NRP1 expression in the VEGF gene loss of function model, which might imply in turn that VEGF could not only activate endothelial cells directly but also could contribute to stimulating angiogenesis in vivo by a mechanism that involved up-regulation of its cognate receptor expression in zebrafish. This contributed to a better understanding of molecular mechanisms of cardiovascular development. The system improved the success rate in making inducible knockdown and widened the possibilities for better therapeutic targets in zebrafish.
Resumo:
Cyanobacteria are the oldest life form making important contributions to global CO2 fixation on the Earth. Phycobilisomes (PBSs) are the major light harvesting systems of most cyanobacteria species. Recent availability of the whole genome database of cyanobacteria provides us a global and further view on the complex structural PBSs. A PBSs linker family is crucial in structure and function of major light-harvesting PBSs complexes. Linker polypeptides are considered to have the same ancestor with other phycobiliproteins (PBPs), and might have been diverged and evolved under particularly selective forces together. In this paper, a total of 192 putative linkers including 167 putative PBSs-associated linker genes and 25 Ferredoxin-NADP oxidoreductase (FNR) genes were detected through whole genome analysis of all 25 cyanobacterial genomes (20 finished and 5 in draft state). We compared the PBSs linker family of cyanobacteria in terms of gene structure, chromosome location, conservation domain, and polymorphic variants, and discussed the features and functions of the PBSs linker family. Most of PBSs-associated linkers in PBSs linker family are assembled into gene clusters with PBPs. A phylogenetic analysis based on protein data demonstrates a possibility of six classes of the linker family in cyanobacteria. Emergence, divergence, and disappearance of PBSs linkers among cyanobacterial species were due to speciation, gene duplication, gene transfer, or gene loss, and acclimation to various environmental selective pressures especially light.
Resumo:
Intron loss and its evolutionary significance have been noted in Drosophila. The current study provides another example of intron loss within a single-copy Dfak gene in Drosophila. By using polymerase chain reaction (PCR), we amplified about 1.3 kb fragment spanning intron 5-10, located in the position of Tyr kinase (TyK) domain of Dfak gene from Drosophila melanogaster species group, and observed size difference among the amplified DNA fragments from different species. Further sequencing analysis revealed that D. melanogaster and D. simulans deleted an about 60 bp of DNA fragment relative to other 7 Drosophila species, such as D. elegans, D. ficusphila, D. biarmipes, D. takahashii, D. jambulina, D. prostipennis and D. pseudoobscura, and the deleted fragment located precisely in the position of one intron. The data suggested that intron loss might have occurred in the Dfak gene evolutionary process of D. melanogaster and D. simulans of Drosophila melanogaster species group. In addition, the constructed phylogenetic tree based on the Dfak TyK domains clearly revealed the evolutionary relationships between subgroups of Drosophila melanogaster species group, and the intron loss identified from D. melanogaster and D. simulans provides a unique diagnostic tool for taxonomic classification of the melanogaster subgroup from other group of genus Drosophila.
Resumo:
CpG islands (CGIs) are often considered as gene markers, but the number of CGIs varies among mammalian genomes that have similar numbers of genes. In this study, we investigated the distribution of CGIs in the promoter regions of 3,197 human-mouse ortholo
Resumo:
Mutation C1494T in mitochondrial 12S rRNA gene was recently reported in two large Chinese families with aminoglycoside-induced and nonsyndromic hearing loss (AINHL) and was claimed to be pathogenic. This mutation, however, was first reported in a sample f
Resumo:
Specific interactions among biomolecules drive virtually all cellular functions and underlie phenotypic complexity and diversity. Biomolecules are not isolated particles, but are elements of integrated interaction networks, and play their roles through specific interactions. Simultaneous emergence or loss of multiple interacting partners is unlikely. If one of the interacting partners is lost, then what are the evolutionary consequences for the retained partner? Taking advantages of the availability of the large number of mammalian genome sequences and knowledge of phylogenetic relationships of the species, we examined the evolutionary fate of the motilin (MLN) hormone gene, after the pseudogenization of its specific receptor, MLN receptor (MLNR), on the rodent lineage. We speculate that the MLNR gene became a pseudogene before the divergence of the squirrel and other rodents about 75 mya. The evolutionary consequences for the MLN gene were diverse. While an intact open reading frame for the MLN gene, which appears functional, was preserved in the kangaroo rat, the MLN gene became inactivated independently on the lineages leading to the guinea pig and the common ancestor of the mouse and rat. Gain and loss of specific interactions among biomolecules through the birth and death of genes for biomolecules point to a general evolutionary dynamic: gene birth and death are widespread phenomena in genome evolution, at the genetic level; thus, once mutations arise, a stepwise process of elaboration and optimization ensues, which gradually integrates and orders mutations into a coherent pattern.
Resumo:
The cyprinid fish genus Sinocyclocheilus, as the most cavefish rich genus, includes many species showing striking adaptation to caves and convergent reduction or even loss of eyes and pigmentation. RH1 is responsible for dim vision. In order to explore the evolution of RH1 gene in this genus, we sequenced the complete gene from 28 individuals of 16 representative species of Sinocyclocheilus, with cave and surface species included. Phylogenetic analyses supported the monophyly of Sinocyclocheilus and polyphyly of the cave species. Codon models implemented in PAML were used to infer the evolution of RH1. We found that Sinocyclocheilus had a significantly higher evolutionary rate for amino acids than other cyprinid fishes compared, which might be the result of relaxation of purifying selection and could be ascribed to cave habit of this genus. In contrast to previous hypotheses, both cave and surface lineages exhibited a similar rate of molecular evolution, so the RH1 of cave species may still be functional, although these species were highly adapted to cave environment. Two amino acid substitutions (D83G and E122V) that were not reported before were found, which may be useful for site-directed mutagenesis in the future.
Resumo:
A vipp1 mutant of Synechocystis sp. PCC 6803 could not be completely segregated under either mixotrophic or heterotrophic conditions. A vipp1 gene with a copper-regulated promoter (P-petE-vipp1) was integrated into a neutral platform in the genome of the merodiploid mutant. The copper-induced expression of P-petE-vipp1 allowed a complete segregation of the vipp1 mutant and observation of the phenotype of Synechocystis 6803 with different levels of vesicle-inducing protein in plastids 1 (Vipp1). When P-petE-vipp1 was turned off by copper deprivation, Synechocystis lost Vipp1 and photosynthetic activity almost simultaneously, and at a later stage, thylakoid membranes and cell viability. The photosystem II (PSII)-mediated electron transfer was much more rapidly reduced than the PSI-mediated electron transfer. By testing a series of concentrations, we found that P-petE-vipp1 cells grown in medium with 0.025 mu M Cu2+ showed no reduction of thylakoid membranes, but greatly reduced photosynthetic activity and viability. These results suggested that in contrast to a previous report, the loss of photosynthetic activity may not have been due to the loss of thylakoid membranes, but may have been caused more directly by the loss of Vipp1 in Synechocystis 6803.
Resumo:
The growth and energy budget for F-2 'all-fish' growth hormone gene transgenic common carp Cyprinus carpio of two body sizes were investigated at 29.2 degrees C for 21 days. Specific growth rate, feed intake, feed efficiency, digestibility coefficients of dry matter and protein, gross energy intake (I-E), and the proportion of I-E utilized for heat production (H-E) were significantly higher in the transgenics than in the controls. The proportion of I-E directed to waste products [faecal energy (F-E) and excretory energy loss (Z(E) + U-E) where Z(E) is through the gills and U-E through the kidney], and the proportion of metabolizable energy (M-E) for recovered energy (R-E) were significantly lower in the transgenics than in the controls. The average energy budget equation of transgenic fish was as follows: 100 I-E = 19.3 F-E + 6.0 (Z(E) + U-E) + 45.2 H-E + 29.5 R-E or 100 M-E = 60.5 H-E + 39.5 R-E. The average energy budget equation of the controls was: 100 I-E = 25.2 F-E + 7.4 (Z(E) + U-E) + 35.5 H-E + 31.9 R-E or 100 M-E = 52.7 H-E + 47.3 R-E. These findings indicate that the high growth rate of 'all-fish' transgenic common carp relative to their non-transgenic counterparts was due to their increased feed intake, reduced lose of waste productions and improved feed efficiency. The benefit of the increased energy intake by transgenic fish, however, was diminished by their increased metabolism.
Resumo:
The bay scallop Argopecten irradians is a hermaphroditic bivalve native to the Atlantic coast of the United States that was introduced to China for aquaculture production in 1982. It now supports a major aquaculture industry in China. Introduced species often start with limited genetic variability, which is problematic for the further selective breeding. Bay scallop aquaculture is exclusively hatchery based and as the initial introduction consisted of only 26 scallops, there have been concerns about inbreeding and inbreeding depression in cultured populations in China. In this study, eleven simple sequence repeat (SSR) markers were used to compare genetic variation in cultured populations from China with that in a natural population from the east coast of America. Although the difference in heterozygosity was small, the Chinese populations lost 9 of the 45 alleles (20%) found in the wild population. The reduced allele diversity suggests that the Chinese bay scallop populations experienced a bottleneck in genetic diversity that remains significant despite several recent introductions of new stocks aimed at expanding the gene pool. The loss of allele diversity may affect future efforts in selective breeding and domestication, and results of this study highlight the need for additional introductions, advanced breeding programs that minimize inbreeding and continued genetic monitoring. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Duplications and rearrangements of coding genes are major themes in the evolution of mitochondrial genomes, bearing important consequences in the function of mitochondria and the fitness of organisms. Yu et al. (BMC Genomics 2008, 9: 477) reported the complete mt genome sequence of the oyster Crassostrea hongkongensis (16,475 bp) and found that a DNA segment containing four tRNA genes (trnK(1), trnC, trnQ(1) and trnN), a duplicated (rrnS) and a split rRNA gene (rrnL5') was absent compared with that of two other Crassostrea species. It was suggested that the absence was a novel case of "tandem duplication-random loss" with evolutionary significance. We independently sequenced the complete mt genome of three C. hongkongensis individuals, all of which were 18,622 bp and contained the segment that was missing in Yu et al.'s sequence. Further, we designed primers, verified sequences and demonstrated that the sequence loss in Yu et al.'s study was an artifact caused by placing primers in a duplicated region. The duplication and split of ribosomal RNA genes are unique for Crassostrea oysters and not lost in C. hongkongensis. Our study highlights the need for caution when amplifying and sequencing through duplicated regions of the genome.