6 resultados para fulgide
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
We investigate the photoinduced anisotropy of a photochromic material of pyrrylfulgide/PMMA films. It is proven that when the film is illuminated with a linear polarization light, an optical axis that has the same polarization as the excitation light could be induced in the film. A matrix of light spots with different polarizations is recorded on the pyrrylfulgide/PMMA film. When reading out with non-polarization light, the matrix of light spots shows no information of patterns. However, when reading out with different linear polarization lights, different patterns could be observed. The experiment confirms that the pyrrylfulgide/PMMA film could be used to record two different polarization patterns in a matrix of spots. This property may be applied in camouflage technology.
Resumo:
(N-4'-methoxy-2-methyl-5-phenyl)-3-pyrryl-ethylidene (isopropylidene) succinic anhydride fulgide, doped in PMMA matrix, exhibits photochromic behavior. The fatigue resistance experiment shows no photodegradation is detected after more than 450 writing-erasing cycles. Study of fulgide material for holographic recording media shows the optimal exposure and the diffraction efficiency is 1047 mJ/cm(2) and 2.26%, respectively, with 10 mum thickness polymer film. Holographic grating with 1680 lines/mm at writing angle theta = 30degrees is also obtained. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Photoinduced anisotropy of a photochromic pyrrylfulgide/PMMA film was investigated by using two linearly polarized beams. Excitation by linearly polarized light induces into the film an optical axis that has the same polarization as the excitation beam. This causes a change of the transmittance and of the polarization state of the detection beam. With a microscope a matrix of 4x4 light spots with different polarizations were recorded in the pyrrylfulgide/PMMA film. If readout with non-polarized light, the matrix of light spots show no information pattern. However, when readout with differently polarized lights, different patterns can be displayed. The experiment demonstrates that pyrrylfulgide/PMMA films can be used to hide two differently polarized patterns, which may be applied in camouflage technology. (C) 2005 Optical Society of America.
Resumo:
Fulgides are one kind of organic photochromic compound, which are famous for their thermal irreversibility. In this report, from the difference spectra of the absorption A() of one kind of pyrrylfulgide, the spectral refractive index change n() was calculated by the Kramers-Kronig relation (KKR), and a good correlation of theoretically derived values and the experimental values of the n measured by a modified Michelson interferometer was found. Further, it is demonstrated that it was possible to calculate the spectral dependence of diffraction efficiency from the easily accessible absorption changes. This method will be a useful tool for the characterization and optimization of fulgide films. The results show that the diffraction efficiency is high at 488 and 750 nm, where the absorption is very small, so we can realize non-destructive reconstruction.
Resumo:
Indoly-benzlfulgimide belongs to the photochromic fulgide family and follows photochemical first order kinetics. Its bleaching kinetics is investigated at 633 nm and 640 nm by spectroscopy, by the time dependence of transmission and of diffraction from holographically induced gratings. The non-exponential decay law resulting for diffraction experiments with a Gaussian beam profile is calculated and verified experimentally. For a quasi-homogeneous beam profile the time constant determined from diffraction decay is half the one for absorbance decay. The photochemical reaction rate of indoly-benzylfulgimide in PMMA is (3.9 +/- 0.3) cm(2)/J at 650 nm. (c) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Two photochromic fulgides, 2-{2-[4-(N,N-dimethylnilino)-5-methyl-4-oxazoly]}ethylidene-4-(1-methylethylidene) tetrahydrofuran-2,5-dione (A) and 3-(1,2-dimethyl-5-phenyl-3-pyrolloethylidene)-4-(1-methylethylidene)tetrahydrofuran-2,5-dione (B), doped in PMMA as candidates of dual-wavelength optical memory for parallel recording has been investigated. With 488 nm-laser and 650 nm-laser, both "cross" and "star" images are recorded on the fulgides-PMMA film and read out clearly, respectively. Crosstalk between two fulgides in PMMA matrix and nondestructive readout has also been explored. The results show that no significant cross-talk is detected between them, and nondestructive readout is up to 201 times. (C) 2005 Elsevier B.V. All rights reserved.